Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1085-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-1085-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Velocity variations and hydrological drainage at Baltoro Glacier, Pakistan
Anna Wendleder
CORRESPONDING AUTHOR
German Remote Sensing Data Center, German Aerospace Center, Oberpfaffenhofen, Germany
Jasmin Bramboeck
Institute for Applications of Machine Learning and Intelligent Systems, Munich University of Applied Sciences, Munich, Germany
Jamie Izzard
School of Geography, University of Leeds, Leeds, UK
Thilo Erbertseder
German Remote Sensing Data Center, German Aerospace Center, Oberpfaffenhofen, Germany
Pablo d'Angelo
Remote Sensing Technology Institute, German Aerospace Center, Oberpfaffenhofen, Germany
Andreas Schmitt
Institute for Applications of Machine Learning and Intelligent Systems, Munich University of Applied Sciences, Munich, Germany
Duncan J. Quincey
School of Geography, University of Leeds, Leeds, UK
Christoph Mayer
Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Munich, Germany
Matthias H. Braun
Institut für Geographie, Friedrich-Alexander-Universität Erlangen–Nuremberg, Erlangen, Germany
Related authors
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Sophie Dufour-Beauséjour, Anna Wendleder, Yves Gauthier, Monique Bernier, Jimmy Poulin, Véronique Gilbert, Juupi Tuniq, Amélie Rouleau, and Achim Roth
The Cryosphere, 14, 1595–1609, https://doi.org/10.5194/tc-14-1595-2020, https://doi.org/10.5194/tc-14-1595-2020, 2020
Short summary
Short summary
Inuit have reported greater variability in seasonal sea ice conditions. For Deception Bay (Nunavik), an area prized for seal and caribou hunting, an increase in snow precipitation and a shorter snow cover period is expected in the near future. In this context, and considering ice-breaking transport in the fjord by mining companies, we combined satellite images and time-lapse photography to monitor sea ice in the area between 2015 and 2018.
A. Schmitt and A. Wendleder
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 133–140, https://doi.org/10.5194/isprs-annals-IV-1-133-2018, https://doi.org/10.5194/isprs-annals-IV-1-133-2018, 2018
A. Bertram, A. Wendleder, A. Schmitt, and M. Huber
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 313–320, https://doi.org/10.5194/isprs-archives-XLI-B8-313-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-313-2016, 2016
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Veronika Gstaiger, Nils Machinia, Nina Merkle, Dominik Rosenbaum, Ronald Nippold, Manuel Muehlhaus, Pablo d’Angelo, Corentin Henry, Xiangtian Yuan, Reza Bahmanyar, Franz Kurz, and Christa-Maria Krieg
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 163–168, https://doi.org/10.5194/isprs-annals-X-3-2024-163-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-163-2024, 2024
Katrina Lutz, Ilaria Tabone, Angelika Humbert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3056, https://doi.org/10.5194/egusphere-2024-3056, 2024
Short summary
Short summary
Supraglacial lakes develop from meltwater collecting on the surface of glaciers. These lakes can drain rapidly, discharging meltwater to the glacier bed. In this study, we assess the spatial and temporal distribution of rapid drainages in Northeast Greenland using optical satellite images. After comparing rapid drainage occurrence with several environmental and geophysical parameters, little indication of the influencing conditions for a rapid drainage was found.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1571, https://doi.org/10.5194/egusphere-2024-1571, 2024
Short summary
Short summary
In the present work, we provide a new ice-thickness reconstruction of the Antarctic Peninsula Ice Sheet north of 70º S by using inversion modeling. This model consists of two steps; the first takes basic assumptions of the rheology of the glacier, and the second uses mass conservation to improve the reconstruction where the previously made assumptions are expected to fail. Validation with independent data showed that our reconstruction improved compared to other reconstruction available.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Angelika Humbert, Veit Helm, Ole Zeising, Niklas Neckel, Matthias H. Braun, Shfaqat Abbas Khan, Martin Rückamp, Holger Steeb, Julia Sohn, Matthias Bohnen, and Ralf Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1151, https://doi.org/10.5194/egusphere-2024-1151, 2024
Short summary
Short summary
We study the evolution of a massive lake on the Greenland Ice Sheet using satellite and airborne data and some modelling. The lake is emptying rapidly. The water flows to the base of the glacier through cracks and gullies that remain visible over years. Some of them become reactive. We find features inside the glacier that stem from the drainage events with even 1 km width. These features are persistent over the years, although they are changing in shape.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
M. Fuentes Reyes, P. d’Angelo, and F. Fraundorfer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1021–1028, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1021-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1021-2023, 2023
P. d’Angelo and J. Tian
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 805–811, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-805-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-805-2023, 2023
K. Bittner, S. Zorzi, T. Krauß, and P. d’Angelo
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 925–933, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-925-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-925-2023, 2023
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023, https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo
The Cryosphere, 17, 2891–2907, https://doi.org/10.5194/tc-17-2891-2023, https://doi.org/10.5194/tc-17-2891-2023, 2023
Short summary
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023, https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Short summary
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to communities living beneath them. We have developed a new camera system which can capture regular, high-quality 3D models to monitor small changes in glaciers which could be indicative of a future hazard. This system is far cheaper than more typical camera sensors yet produces very similar quality data. We suggest that deploying these cameras near glaciers could assist in warning communities of hazards.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Christopher D. Stringer, Jonathan L. Carrivick, Duncan J. Quincey, and Daniel Nývlt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-250, https://doi.org/10.5194/essd-2022-250, 2022
Revised manuscript not accepted
Short summary
Short summary
Glaciers in Antarctica have been decreasing in size at a fast rate, leading to the expansion of proglacial areas, with wide-ranging ecological implications. Several global land-cover maps exist, but they do not include Antarctica. We map land cover types across West Antarctica and the McMurdo Dry Valleys to a high degree of accuracy (77.0 %). We highlight the spatial variation in land cover and emphasise the need for more field data.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
J. Tian, X. Zhuo, X. Yuan, C. Henry, P. d’Angelo, and T. Krauss
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2022, 145–152, https://doi.org/10.5194/isprs-annals-V-1-2022-145-2022, https://doi.org/10.5194/isprs-annals-V-1-2022-145-2022, 2022
F. Kurz, P. Mendes, V. Gstaiger, R. Bahmanyar, P. d’Angelo, S. M. Azimi, S. Auer, N. Merkle, C. Henry, D. Rosenbaum, J. Hellekes, H. Runge, F. Toran, and P. Reinartz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2022, 221–226, https://doi.org/10.5194/isprs-annals-V-1-2022-221-2022, https://doi.org/10.5194/isprs-annals-V-1-2022-221-2022, 2022
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022, https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Short summary
Arctic glaciers have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small in the past. In this study we provide mass changes of most glaciers of the Russian High Arctic (Franz Josef Land, Severnaya Zemlya, Novaya Zemlya). We use TanDEM-X satellite measurements to derive glacier surface elevation changes. Our results show an increase in glacier mass loss and a sea level rise contribution of 0.06 mm/a (2010–2017).
Peter Friedl, Thorsten Seehaus, and Matthias Braun
Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, https://doi.org/10.5194/essd-13-4653-2021, 2021
Short summary
Short summary
Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modeling and glacier mass flux computations. We present a new data set of glacier surface velocities derived from Sentinel-1 radar satellite data that covers 12 major glaciated regions outside the polar ice sheets. The data comprise continuously updated scene-pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution.
L. Petry, T. Meiers, D. Reuschenberg, S. Mirzavand Borujeni, J. Arndt, L. Odenthal, T. Erbertseder, H. Taubenböck, I. Müller, E. Kalusche, B. Weber, J. Käflein, C. Mayer, G. Meinel, C. Gengenbach, and H. Herold
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VIII-4-W1-2021, 89–96, https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-89-2021, https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-89-2021, 2021
Joschka Geissler, Christoph Mayer, Juilson Jubanski, Ulrich Münzer, and Florian Siegert
The Cryosphere, 15, 3699–3717, https://doi.org/10.5194/tc-15-3699-2021, https://doi.org/10.5194/tc-15-3699-2021, 2021
Short summary
Short summary
The study demonstrates the potential of photogrammetry for analyzing glacier retreat with high spatial resolution. Twenty-three glaciers within the Ötztal Alps are analyzed. We compare photogrammetric and glaciologic mass balances of the Vernagtferner by using the ELA for our density assumption and an UAV survey for a temporal correction of the geodetic mass balances. The results reveal regions of anomalous mass balance and allow estimates of the imbalance between mass balances and ice dynamics.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
P. d’Angelo and P. Reinartz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 77–82, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-77-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-77-2021, 2021
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Christoph Mayer, Markus Weber, Anja Wendt, and Wilfried Hagg
Polarforschung, 89, 1–7, https://doi.org/10.5194/polf-89-1-2021, https://doi.org/10.5194/polf-89-1-2021, 2021
Short summary
Short summary
Only five small glaciers exist in the German part of the Alps. They are too small to play an important role in the regional hydrological system, but are significant remnants of the earlier glaciation of the northern Alps. Therefore, they have been mapped already in the 19th century and are monitored since about 1950. A survey in 2018 documents the recent status of the glaciers. The synthesis of the long term monitoring and an estimate of the future for these small ice bodies is presented here.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020, https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro are unique indicators for climatic changes in the tropical midtroposphere of Africa. A history of severe glacier area loss raises concerns about an imminent future disappearance. Yet the remaining ice volume is not well known. Here, we reconstruct ice thickness maps for the two largest remaining ice bodies to assess the current glacier state. We believe that our approach could provide a means for a glacier-specific calibration of reconstructions on different scales.
L. Petry, H. Herold, G. Meinel, T. Meiers, I. Müller, E. Kalusche, T. Erbertseder, H. Taubenböck, E. Zaunseder, V. Srinivasan, A. Osman, B. Weber, S. Jäger, C. Mayer, and C. Gengenbach
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-4-W2-2020, 37–43, https://doi.org/10.5194/isprs-archives-XLIV-4-W2-2020-37-2020, https://doi.org/10.5194/isprs-archives-XLIV-4-W2-2020-37-2020, 2020
N. Merkle, V. Gstaiger, E. Schröter, P. d’Angelo, S. M. Azimi, U. Kippnich, C. Barthel, and F. Kurz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 1243–1249, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1243-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1243-2020, 2020
Y. Xia, P. d’Angelo, J. Tian, and P. Reinartz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 521–525, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-521-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-521-2020, 2020
Sophie Dufour-Beauséjour, Anna Wendleder, Yves Gauthier, Monique Bernier, Jimmy Poulin, Véronique Gilbert, Juupi Tuniq, Amélie Rouleau, and Achim Roth
The Cryosphere, 14, 1595–1609, https://doi.org/10.5194/tc-14-1595-2020, https://doi.org/10.5194/tc-14-1595-2020, 2020
Short summary
Short summary
Inuit have reported greater variability in seasonal sea ice conditions. For Deception Bay (Nunavik), an area prized for seal and caribou hunting, an increase in snow precipitation and a shorter snow cover period is expected in the near future. In this context, and considering ice-breaking transport in the fjord by mining companies, we combined satellite images and time-lapse photography to monitor sea ice in the area between 2015 and 2018.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019, https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Short summary
Ice rises are important ice-sheet features that archive the ice sheet's history in their internal structure. Here we use a 3-D numerical ice-sheet model to simulate mechanisms that lead to changes in the geometry of the internal structure. We find that changes in snowfall result in much larger and faster changes than similar changes in ice-shelf geometry. This result is integral to fully unlocking the potential of ice rises as ice-dynamic archives and potential ice-core drilling sites.
Thorsten Seehaus, Philipp Malz, Christian Sommer, Stefan Lippl, Alejo Cochachin, and Matthias Braun
The Cryosphere, 13, 2537–2556, https://doi.org/10.5194/tc-13-2537-2019, https://doi.org/10.5194/tc-13-2537-2019, 2019
Short summary
Short summary
The glaciers in Peru are strongly affected by climate change and have shown significant ice loss in the last century. We present the first multi-temporal, countrywide quantification of glacier area and ice mass changes. A glacier area loss of −548.5 ± 65.7 km2 (−29 %) and ice mass loss of −7.62 ± 1.05 Gt is obtained for the period 2000–2016. The ice loss rate increased towards the end of the observation period. The glacier changes revealed can be attributed to regional climatic changes and ENSO.
Y. Xia, J. Tian, P. d’Angelo, and P. Reinartz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W7, 205–210, https://doi.org/10.5194/isprs-annals-IV-2-W7-205-2019, https://doi.org/10.5194/isprs-annals-IV-2-W7-205-2019, 2019
P. d’Angelo and F. Kurz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1643–1647, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1643-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1643-2019, 2019
C. Kempf, J. Tian, F. Kurz, P. d’Angelo, and P. Reinartz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 43–50, https://doi.org/10.5194/isprs-archives-XLII-2-W13-43-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-43-2019, 2019
F. Kurz, T. Krauß, H. Runge, D. Rosenbaum, and P. d’Angelo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 61–66, https://doi.org/10.5194/isprs-archives-XLII-2-W13-61-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-61-2019, 2019
Mingyang Lv, Huadong Guo, Xiancai Lu, Guang Liu, Shiyong Yan, Zhixing Ruan, Yixing Ding, and Duncan J. Quincey
The Cryosphere, 13, 219–236, https://doi.org/10.5194/tc-13-219-2019, https://doi.org/10.5194/tc-13-219-2019, 2019
Short summary
Short summary
We highlight 28 glaciers in the Kingata Mountains, among which 17 have changed markedly over the last decade. We identify four advancing and 13 surge-type glaciers. The dynamic evolution of the surges is similar to that of Karakoram, suggesting that both hydrological and thermal controls are important for surge initiation and recession. Topography seems to be a dominant control on non-surge glacier behaviour. Most glaciers experienced a significant and diverse change in their motion patterns.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
A. Schmitt and A. Wendleder
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 133–140, https://doi.org/10.5194/isprs-annals-IV-1-133-2018, https://doi.org/10.5194/isprs-annals-IV-1-133-2018, 2018
C.-Y. Sheu, F. Kurz, and P. Angelo
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 147–154, https://doi.org/10.5194/isprs-annals-IV-1-147-2018, https://doi.org/10.5194/isprs-annals-IV-1-147-2018, 2018
H. Bagheri, M. Schmitt, P. d’Angelo, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 43–48, https://doi.org/10.5194/isprs-archives-XLII-2-43-2018, https://doi.org/10.5194/isprs-archives-XLII-2-43-2018, 2018
K. Bittner, P. d’Angelo, M. Körner, and P. Reinartz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 103–108, https://doi.org/10.5194/isprs-archives-XLII-2-103-2018, https://doi.org/10.5194/isprs-archives-XLII-2-103-2018, 2018
Y. Xia, J. Tian, P. d’Angelo, and P. Reinartz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 303–309, https://doi.org/10.5194/isprs-annals-IV-2-303-2018, https://doi.org/10.5194/isprs-annals-IV-2-303-2018, 2018
Peter Friedl, Thorsten C. Seehaus, Anja Wendt, Matthias H. Braun, and Kathrin Höppner
The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, https://doi.org/10.5194/tc-12-1347-2018, 2018
Short summary
Short summary
Fleming Glacier is the biggest tributary glacier of the former Wordie Ice Shelf. Radar satellite data and airborne ice elevation measurements show that the glacier accelerated by ~27 % between 2008–2011 and that ice thinning increased by ~70 %. This was likely a response to a two-phase ungrounding of the glacier tongue between 2008 and 2011, which was mainly triggered by increased basal melt during two strong upwelling events of warm circumpolar deep water.
Thorsten Seehaus, Alison J. Cook, Aline B. Silva, and Matthias Braun
The Cryosphere, 12, 577–594, https://doi.org/10.5194/tc-12-577-2018, https://doi.org/10.5194/tc-12-577-2018, 2018
Short summary
Short summary
The ice sheet of northern Antarctic Peninsula has been significantly affected by climate change within the last century. A temporally and spatially detailed study on the evolution of glacier retreat and flow speeds of 74 basins is provided. Since 1985 a total frontal retreat of 238 km2 and since 1992 regional mean changes in ice flow by up to 58 % are observed. The trends in ice dynamics are correlated with geometric parameters of the glacier catchments and regional climatic settings.
Ulrich Strasser, Thomas Marke, Ludwig Braun, Heidi Escher-Vetter, Irmgard Juen, Michael Kuhn, Fabien Maussion, Christoph Mayer, Lindsey Nicholson, Klaus Niedertscheider, Rudolf Sailer, Johann Stötter, Markus Weber, and Georg Kaser
Earth Syst. Sci. Data, 10, 151–171, https://doi.org/10.5194/essd-10-151-2018, https://doi.org/10.5194/essd-10-151-2018, 2018
Short summary
Short summary
A hydrometeorological and glaciological data set is presented with recordings from several research sites in the Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria). The data sets are spanning 150 years and represent a unique pool of high mountain observations, enabling combined research of atmospheric, cryospheric and hydrological processes in complex terrain, and the development of state-of-the-art hydroclimatological and glacier mass balance models.
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
Katie E. Miles, Bryn Hubbard, Tristam D. L. Irvine-Fynn, Evan S. Miles, Duncan J. Quincey, and Ann V. Rowan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-210, https://doi.org/10.5194/tc-2017-210, 2017
Preprint withdrawn
Short summary
Short summary
The production and routing of meltwater through glaciers is important because that water influences glacier sliding, and represents a resource in some instances and a hazard in others. Despite this importance, very little is known about the hydrology of debris-covered glaciers, which are commonly located at high altitudes. Here, we present a review of the hydrology of debris-covered glaciers, summarizing the current state of knowledge and identify potential future research priorities.
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
J. Tian, T. Krauß, and P. d’Angelo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1-W1, 393–397, https://doi.org/10.5194/isprs-archives-XLII-1-W1-393-2017, https://doi.org/10.5194/isprs-archives-XLII-1-W1-393-2017, 2017
R. Ilehag, S. Auer, and P. d’Angelo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1-W1, 55–61, https://doi.org/10.5194/isprs-archives-XLII-1-W1-55-2017, https://doi.org/10.5194/isprs-archives-XLII-1-W1-55-2017, 2017
Melanie Rankl, Johannes Jakob Fürst, Angelika Humbert, and Matthias Holger Braun
The Cryosphere, 11, 1199–1211, https://doi.org/10.5194/tc-11-1199-2017, https://doi.org/10.5194/tc-11-1199-2017, 2017
Owen King, Duncan J. Quincey, Jonathan L. Carrivick, and Ann V. Rowan
The Cryosphere, 11, 407–426, https://doi.org/10.5194/tc-11-407-2017, https://doi.org/10.5194/tc-11-407-2017, 2017
Short summary
Short summary
We used multiple digital elevation models to quantify melt on 32 glaciers in the Everest region of the Himalayas. We examined whether patterns of melt differed depending on whether the glacier terminated on land or in water. We found that glaciers terminating in large lakes had the highest melt rates, but that those terminating in small lakes had comparable melt rates to those terminating on land. We carried out this research because Himalayan people are highly dependent on glacier meltwater.
Janin Schaffer, Ralph Timmermann, Jan Erik Arndt, Steen Savstrup Kristensen, Christoph Mayer, Mathieu Morlighem, and Daniel Steinhage
Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, https://doi.org/10.5194/essd-8-543-2016, 2016
Short summary
Short summary
The RTopo-2 data set provides consistent maps of global ocean bathymetry and ice surface topographies for Greenland and Antarctica at 30 arcsec grid spacing. We corrected data from earlier products in the areas of Petermann, Hagen Bræ, and Helheim glaciers, incorporated original data for the floating ice tongue of Nioghalvfjerdsfjorden Glacier, and applied corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available from the PANGAEA database.
A. Bertram, A. Wendleder, A. Schmitt, and M. Huber
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 313–320, https://doi.org/10.5194/isprs-archives-XLI-B8-313-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-313-2016, 2016
Pablo d’Angelo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 299–304, https://doi.org/10.5194/isprs-archives-XLI-B1-299-2016, https://doi.org/10.5194/isprs-archives-XLI-B1-299-2016, 2016
S. J. Cook and D. J. Quincey
Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, https://doi.org/10.5194/esurf-3-559-2015, 2015
Short summary
Short summary
We compiled data on Alpine glacial lake morphometry to test empirical relationships that are used to estimate lake volume for the modelling of glacial lake outburst floods. We find wide scatter in the relationship between lake area and depth, and between area and volume, and identify contexts where existing empirical relationships are poor volume predictors. We generate a data-driven conceptual model of how lake volume should be expected to scale with area for a range of glacial lake contexts.
D. R. Rounce, D. J. Quincey, and D. C. McKinney
The Cryosphere, 9, 2295–2310, https://doi.org/10.5194/tc-9-2295-2015, https://doi.org/10.5194/tc-9-2295-2015, 2015
Short summary
Short summary
A debris-covered glacier energy balance was used to model debris temperatures and sub-debris ablation rates on Imja-Lhotse Shar Glacier during the 2014 melt season. Field measurements were used to assess model performance. A novel method was also developed using Structure from Motion to estimate the surface roughness. Lastly, the effects of temporal resolution, i.e., 6h and daily time steps, and various methods for estimating the latent heat flux were also investigated.
A. Diez, O. Eisen, C. Hofstede, A. Lambrecht, C. Mayer, H. Miller, D. Steinhage, T. Binder, and I. Weikusat
The Cryosphere, 9, 385–398, https://doi.org/10.5194/tc-9-385-2015, https://doi.org/10.5194/tc-9-385-2015, 2015
B. Osmanoglu, F. J. Navarro, R. Hock, M. Braun, and M. I. Corcuera
The Cryosphere, 8, 1807–1823, https://doi.org/10.5194/tc-8-1807-2014, https://doi.org/10.5194/tc-8-1807-2014, 2014
M. Rankl, C. Kienholz, and M. Braun
The Cryosphere, 8, 977–989, https://doi.org/10.5194/tc-8-977-2014, https://doi.org/10.5194/tc-8-977-2014, 2014
D. J. Quincey and A. Luckman
The Cryosphere, 8, 571–574, https://doi.org/10.5194/tc-8-571-2014, https://doi.org/10.5194/tc-8-571-2014, 2014
M. Juen, C. Mayer, A. Lambrecht, H. Han, and S. Liu
The Cryosphere, 8, 377–386, https://doi.org/10.5194/tc-8-377-2014, https://doi.org/10.5194/tc-8-377-2014, 2014
A. A. W. Fitzpatrick, A. L. Hubbard, J. E. Box, D. J. Quincey, D. van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones
The Cryosphere, 8, 107–121, https://doi.org/10.5194/tc-8-107-2014, https://doi.org/10.5194/tc-8-107-2014, 2014
M. Thoma, K. Grosfeld, D. Barbi, J. Determann, S. Goeller, C. Mayer, and F. Pattyn
Geosci. Model Dev., 7, 1–21, https://doi.org/10.5194/gmd-7-1-2014, https://doi.org/10.5194/gmd-7-1-2014, 2014
Q. Liu, C. Mayer, and S. Liu
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-4545-2013, https://doi.org/10.5194/tcd-7-4545-2013, 2013
Revised manuscript not accepted
M. Zemp, E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P. C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, and L. M. Andreassen
The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, https://doi.org/10.5194/tc-7-1227-2013, 2013
U. Minora, D. Bocchiola, C. D'Agata, D. Maragno, C. Mayer, A. Lambrecht, B. Mosconi, E. Vuillermoz, A. Senese, C. Compostella, C. Smiraglia, and G. Diolaiuti
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-2891-2013, https://doi.org/10.5194/tcd-7-2891-2013, 2013
Revised manuscript not accepted
E. Collier, T. Mölg, F. Maussion, D. Scherer, C. Mayer, and A. B. G. Bush
The Cryosphere, 7, 779–795, https://doi.org/10.5194/tc-7-779-2013, https://doi.org/10.5194/tc-7-779-2013, 2013
T. O. Holt, N. F. Glasser, D. J. Quincey, and M. R. Siegfried
The Cryosphere, 7, 797–816, https://doi.org/10.5194/tc-7-797-2013, https://doi.org/10.5194/tc-7-797-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Glacier Hydrology
Modeling saline-fluid flow through subglacial channels
Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast and Southwest Greenland
Hydrological response of Andean catchments to recent glacier mass loss
Characterizing sub-glacial hydrology using radar simulations
Seasonal to decadal dynamics of supraglacial lakes on debris-covered glaciers in the Khumbu region, Nepal
A conceptual model for glacial lake bathymetric distribution
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 1: Steady states and friction laws
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 2: A dynamic viscoelastic model
The impact of surface melt rate and catchment characteristics on Greenland Ice Sheet moulin inputs
Evaporation over a glacial lake in Antarctica
A local model of snow–firn dynamics and application to the Colle Gnifetti site
Accumulation of legacy fallout radionuclides in cryoconite on Isfallsglaciären (Arctic Sweden) and their downstream spatial distribution
Drainage of an ice-dammed lake through a supraglacial stream: hydraulics and thermodynamics
Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland
Geophysical constraints on the properties of a subglacial lake in northwest Greenland
Gulf of Alaska ice-marginal lake area change over the Landsat record and potential physical controls
Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard
Buoyant calving and ice-contact lake evolution at Pasterze Glacier (Austria) in the period 1998–2019
An analysis of instabilities and limit cycles in glacier-dammed reservoirs
Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland
Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
The Cryosphere, 18, 5451–5464, https://doi.org/10.5194/tc-18-5451-2024, https://doi.org/10.5194/tc-18-5451-2024, 2024
Short summary
Short summary
Water in some glacier environments contains salt, which increases its density and lowers its freezing point, allowing saline water to exist where freshwater cannot. Previous subglacial hydrology models do not consider saline fluid. We model the flow of saline fluid from a subglacial lake through a circular channel at the glacier bed, finding that higher salinities lead to less melting at the channel walls and lower discharge rates. We also observe the impact of increased fluid density on flow.
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024, https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
Short summary
In this study we developed methods for automatically identifying supraglacial lakes in multiple satellite imagery sources for eight glaciers in Nepal. We identified a substantial seasonal variability in lake area, which was as large as the variability seen across entire decades. These complex patterns are not captured in existing regional-scale datasets. Our findings show that this seasonal variability must be accounted for in order to interpret long-term changes in debris-covered glaciers.
Taigang Zhang, Weicai Wang, and Baosheng An
The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023, https://doi.org/10.5194/tc-17-5137-2023, 2023
Short summary
Short summary
Detailed glacial lake bathymetry surveys are essential for accurate glacial lake outburst flood (GLOF) simulation and risk assessment. We creatively developed a conceptual model for glacial lake bathymetric distribution. The basic idea is that the statistical glacial lake volume–area curves conform to a power-law relationship indicating that the idealized geometric shape of the glacial lake basin should be hemispheres or cones.
Christian Schoof
The Cryosphere, 17, 4797–4815, https://doi.org/10.5194/tc-17-4797-2023, https://doi.org/10.5194/tc-17-4797-2023, 2023
Short summary
Short summary
Computational models that seek to predict the future behaviour of ice sheets and glaciers typically rely on being able to compute the rate at which a glacier slides over its bed. In this paper, I show that the degree to which the glacier bed is
hydraulically connected(how easily water can flow along the glacier bed) plays a central role in determining how fast ice can slide.
Christian Schoof
The Cryosphere, 17, 4817–4836, https://doi.org/10.5194/tc-17-4817-2023, https://doi.org/10.5194/tc-17-4817-2023, 2023
Short summary
Short summary
The subglacial drainage of meltwater plays a major role in regulating glacier and ice sheet flow. In this paper, I construct and solve a mathematical model that describes how connections are made within the subglacial drainage system. This will aid future efforts to predict glacier response to surface melt supply.
Tim Hill and Christine F. Dow
The Cryosphere, 17, 2607–2624, https://doi.org/10.5194/tc-17-2607-2023, https://doi.org/10.5194/tc-17-2607-2023, 2023
Short summary
Short summary
Water flow across the surface of the Greenland Ice Sheet controls the rate of water flow to the glacier bed. Here, we simulate surface water flow for a small catchment on the southwestern Greenland Ice Sheet. Our simulations predict significant differences in the form of surface water flow in high and low melt years depending on the rate and intensity of surface melt. These model outputs will be important in future work assessing the impact of surface water flow on subglacial water pressure.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Fabiola Banfi and Carlo De Michele
The Cryosphere, 16, 1031–1056, https://doi.org/10.5194/tc-16-1031-2022, https://doi.org/10.5194/tc-16-1031-2022, 2022
Short summary
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modelling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between April and September since higher temperatures protect snow from erosion. We also compared modelled and observed firn density, obtaining a satisfying agreement.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Short summary
We present a unique insight into the shape and development of a subglacial lake over a 7-year period, using repeated radar survey. The lake collects geothermal meltwater, which is released in semi-regular floods, often referred to as jökulhlaups. The applicability of our survey approach to monitor the water stored in the lake for a better assessment of the potential hazard of jökulhlaups is demonstrated by comparison with independent measurements of released water volume during two jökulhlaups.
Ross Maguire, Nicholas Schmerr, Erin Pettit, Kiya Riverman, Christyna Gardner, Daniella N. DellaGiustina, Brad Avenson, Natalie Wagner, Angela G. Marusiak, Namrah Habib, Juliette I. Broadbeck, Veronica J. Bray, and Samuel H. Bailey
The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, https://doi.org/10.5194/tc-15-3279-2021, 2021
Short summary
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Chloé Scholzen, Thomas V. Schuler, and Adrien Gilbert
The Cryosphere, 15, 2719–2738, https://doi.org/10.5194/tc-15-2719-2021, https://doi.org/10.5194/tc-15-2719-2021, 2021
Short summary
Short summary
We use a two-dimensional model of water flow below the glaciers in Kongsfjord, Svalbard, to investigate how different processes of surface-to-bed meltwater transfer affect subglacial hydraulic conditions. The latter are important for the sliding motion of glaciers, which in some cases exhibit huge variations. Our findings indicate that the glaciers in our study area undergo substantial sliding because water is poorly evacuated from their base, with limited influence from the surface hydrology.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Christian Schoof
The Cryosphere, 14, 3175–3194, https://doi.org/10.5194/tc-14-3175-2020, https://doi.org/10.5194/tc-14-3175-2020, 2020
Short summary
Short summary
Glacier lake outburst floods are major glacial hazards in which ice-dammed reservoirs rapidly drain, often in a recurring fashion. The main flood phase typically involves a growing channel being eroded into ice by water flow. What is poorly understood is how that channel first comes into being. In this paper, I investigate how an under-ice drainage system composed of small, naturally occurring voids can turn into a channel and how this can explain the cyclical behaviour of outburst floods.
Samuel J. Cook, Poul Christoffersen, Joe Todd, Donald Slater, and Nolwenn Chauché
The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020, https://doi.org/10.5194/tc-14-905-2020, 2020
Short summary
Short summary
This paper models how water flows beneath a large Greenlandic glacier and how the structure of the drainage system it flows in changes over time. We also look at how this affects melting driven by freshwater plumes at the glacier front, as well as the implications for glacier flow and sea-level rise. We find an active drainage system and plumes exist year round, contradicting previous assumptions and suggesting more melting may not slow the glacier down, unlike at other sites in Greenland.
Camilo Rada and Christian Schoof
The Cryosphere, 12, 2609–2636, https://doi.org/10.5194/tc-12-2609-2018, https://doi.org/10.5194/tc-12-2609-2018, 2018
Short summary
Short summary
We analyse a large glacier borehole pressure dataset and provide a holistic view of the observations, suggesting a consistent picture of the evolution of the subglacial drainage system. Some aspects are consistent with the established understanding and others ones are not. We propose that most of the inconsistencies arise from the capacity of some areas of the bed to become hydraulically isolated. We present an adaptation of an existing drainage model that incorporates this phenomena.
Cited articles
Armstrong, W. H., Anderson, R. S., and Fahnestock, M. A.: Spatial Patterns of Summer Speedup on South Central Alaska Glaciers, Geophys. Res. Lett., 44, 9379–9388, https://doi.org/10.1002/2017GL074370, 2017. a
Bartholomaus, T., Anderson, R., and Anderson, S.: Response of glacier basal motion to transient water storage, Nat. Geosci., 1, 33–37, https://doi.org/10.1038/ngeo.2007.52, 2008. a
Benn, D. I., Thompson, S., Gulley, J., Mertes, J., Luckman, A., and Nicholson, L.: Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss, The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, 2017. a, b
Benn, D. I., Fowler, A. C., Hewitt, I., and Sevestre, H.: A general theory of glacier surges, J. Glaciol., 65, 701–716, https://doi.org/10.1017/jog.2019.62, 2019. a, b, c
Berthier, E. and Brun, F.: Karakoram geodetic glacier mass balances between 2008 and 2016: persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier, J. Glaciol., 65, 494–507, https://doi.org/10.1017/jog.2019.32, 2019. a
Bookhagen, B. and Burbank, D.: Topography, relief and TRMM-derived rainfall variations along the Himalaya, Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL026037, 2006. a
Boulton, G. S. and Hindmarsh, R. C. A.: Sediment deformation beneath glaciers: Rheology and geological consequences, J. Geophys. Res-Sol. Ea., 92, 9059–9082, https://doi.org/10.1029/JB092iB09p09059, 1987. a
Brodsky, I.: H3: Hexagonal hierarchical geospatial indexing system, Uber Open Source, https://www.uber.com/en-DE/blog/h3/ (last access: 15 September 2023), 2018. a
Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., Vincent, C., Reverchon, C., Shrestha, D., and Arnaud, Y.: Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya, The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, 2018. a, b
Burgess, E., Forster, R., and Larsen, C.: Flow velocities of Alaskan glaciers, Nat. Commun., 4, 9059–9082, https://doi.org/10.1038/ncomms3146, 2013. a, b
Buri, P., Miles, E., Steiner, J., Ragettli, S., and Pellicciotti, F.: Supraglacial Ice Cliffs Can Substantially Increase the Mass Loss of Debris-Covered Glaciers, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2020gl092150, 2021. a, b
Copland, L., Sharp, M. J., and Nienow, P. W.: Links between short-term velocity variations and the subglacial hydrology of a predominantly cold polythermal glacier, J. Glaciol., 49, 337–348, https://doi.org/10.3189/172756503781830656, 2003. a
DLR: TerraSAR-X Science Service System, DLR [data set], https://sss.terrasar-x.dlr.de/, last access: 10 August 2023. a
Dobreva, I. D., Bishop, M. P., and Bush, A. B. G.: Climate–Glacier Dynamics and Topographic Forcing in the Karakoram Himalaya: Concepts, Issues and Research Directions, Water, 9, 1–29, https://doi.org/10.3390/w9060405, 2017. a, b
ESA: Homepage, ESA [data set], https://dataspace.copernicus.eu/, last access: 23 October 2023. a
Evatt, G. W., Mayer, C., Mallinson, A., Abrahams, I. D., Heil, M., and Nicholson, L.: The secret life of ice sails, J. Glaciol., 63, 1049–1062, https://doi.org/10.1017/jog.2017.72, 2017. a
Fichtner, F., Mandery, N., Wieland, M., Groth, S., Martinis, S., and Riedlinger, T.: Time-series analysis of Sentinel-1/2 data for flood detection using a discrete global grid system and seasonal decomposition, Int. J. Appl. Earth Obs., 119, 103329, https://doi.org/10.1016/j.jag.2023.103329, 2023. a
Flowers, G. E.: Modelling water flow under glaciers and ice sheets, P. R. Soc. A., 471, 1347–1365, https://doi.org/10.1098/rspa.2014.0907, 2015. a, b
Friedl, P., Seehaus, T. C., Wendt, A., Braun, M. H., and Höppner, K.: Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula, The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, 2018. a
Friedl, P., Seehaus, T., and Braun, M.: Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data, Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, 2021. a
Glasser, N.: 8.6 Water in Glaciers and Ice Sheets, T. Geomorphol., 8, 61–73, https://doi.org/10.1016/B978-0-12-374739-6.00195-0, 2013. a
Hagolle, O., Huc, M., Desjardins, C., Auer, S., and Richter, R.: MAJA Algorithm Theoretical Basis Document, Stochastic Environmental Research and Risk Assessment, Version 1.0, Zenodo, https://doi.org/10.5281/zenodo.1209633, 2017. a
Hart, J., Young, D., Baurley, N., Robson, B. A., and Martinez, K.: The seasonal evolution of subglacial drainage pathways beneath a soft-bedded glacier, Commun. Earth Environ., 3, 152, https://doi.org/10.1038/s43247-022-00484-9, 2022. a, b
Hausdorff, F.: Grundzüge der Mengenlehre, Veit, Leipzig, 999137, 1914. a
Hewitt, I.: Seasonal changes in ice sheet motion due to melt water lubrication, Earth Planet. Sc. Lett., 371–372, 16–25, https://doi.org/10.1016/j.epsl.2013.04.022, 2013. a, b, c
Hoffman, M., Andrews, L., Price, S., Catania, G. A., Neumann, T. A., Lüthi, M. P., Gulley, J., Ryser, C., Hawley, R. L., and Morriss, B.: Greenland subglacial drainage evolution regulated by weakly connected regions of the bed, Nat. Commun., 7, 13903, https://doi.org/10.1038/ncomms13903, 2016. a
Huo, D., Bishop, M., and Bush, A.: Understanding Complex Debris-Covered Glaciers: Concepts, Issues, and Research Directions, Front. Earth Sci., 9, 358, https://doi.org/10.3389/feart.2021.652279, 2021. a
Iken, A. and Bindschadler, R. A.: Combined measurements of Subglacial Water Pressure and Surface Velocity of Findelengletscher, Switzerland: Conclusions about Drainage System and Sliding Mechanism, J. Glaciol., 32, 101–119, https://doi.org/10.3189/S0022143000006936, 1986. a, b, c
Liu, Q., Christoph, M., and Shiyin, L.: Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia, Environ. Res. Lett., 10, 014014, https://doi.org/10.1088/1748-9326/10/1/014014, 2015. a
Lliboutry, L.: General Theory of Subglacial Cavitation and Sliding of Temperate Glaciers, J. Glaciol., 7, 21–58, https://doi.org/10.3189/S0022143000020396, 1968. a
Macgregor, K. R., Riihimaki, C. A., and Anderson, R. S.: Spatial and temporal evolution of rapid basal sliding on Bench Glacier, Alaska, USA, J. Glaciol., 51, 49–63, https://doi.org/10.3189/172756505781829485, 2005. a, b
Mair, D., Nienow, P., Willis, I., and Sharp, M.: Spatial patterns of glacier motion during a high-velocity event: Haut Glacier d’Arolla, Switzerland, J. Glaciol., 47, 9–20, https://doi.org/10.3189/172756501781832412, 2001. a, b
Mayer, C., Lambrecht, A., Oerter, H., Schwikowski, M., Vuillermoz, E., Frank, N., and Diolaiuti, G.: Accumulation Studies at a High Elevation Glacier Site in Central Karakoram, Adv. Meteorol., 2014, 1–12, https://doi.org/10.1155/2014/215162, 2014. a, b
Mihalcea, C., Mayer, C., Diolaiutt, G., D’Agata, C., Smiraglia, C., Lambrecht, A., Vuillermoz, E., and Tartari, G.: Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan, Ann. Glaciol., 48, 49–57, https://doi.org/10.3189/172756408784700680, 2008. a
Miles, K. E., Hubbard, B., Irvine-Fynn, T. D. L., Miles, E. S., Quincey, D. J., and Rowan, A. V.: Hydrology of debris-covered glaciers in High Mountain Asia, Earth-Sci. Rev., 207, 103212, https://doi.org/10.1016/j.earscirev.2020.103212, 2020. a, b, c
Nagler, T. and Rott, H.: Retrieval of wet snow by means of multitemporal SAR data, IEEE T. Geosci. Remote, 38, 754–765, https://doi.org/10.1109/36.842004, 2000. a, b
Nanni, U., Scherler, D., Ayoub, F., Millan, R., Herman, F., and Avouac, J.-P.: Climatic control on seasonal variations in mountain glacier surface velocity, The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, 2023. a, b, c, d
Nicholson, L. and Benn, D.: Calculating ice melt beneath a de-bris layer using meteorological data, J. Glaciol., 52, 463–470, https://doi.org/10.3189/172756506781828584, 2006. a
Nicholson, L. I., McCarthy, M., Pritchard, H. D., and Willis, I.: Supraglacial debris thickness variability: impact on ablation and relation to terrain properties, The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018, 2018. a, b
Nienow, P., Sharp, M., and Willis, I.: Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d'Arolla, Switzerland, Earth Surf. Proc. Land., 23, 825–843, 1998. a
Nolan, M. and Echelmeyer, K.: Seismic detection of transient changes beneath Black Rapids Glacier, Alaska, U.S.A.: II. Basal morphology and processes, J. Glaciol., 45, 132–146, https://doi.org/10.3189/S0022143000003117, 1999. a
Obilor, E. I. and Amadi, E.: Test for Significance of Pearson's Correlation Coefficient (r), International Journal of Innovative Mathematics, Statistics and Energy Policies, 6, 11–23, 2018. a
Otto, F. E. L., Zachariah, M., Saeed, F., Siddiqi, A., Kamil, S., Mushtaq, H., Arulalan, T., AchutaRao, K., Chaithra, S. T., Barnes, C., Philip, S., Kew, S., Vautard, R., Koren, G., Pinto, I., Wolski, P., Vahlberg, M., Singh, R., Arrighi, J., van Aalst, M., Thalheimer, L., Raju, E., Li, S., Yang, W., Harrington, L. J., and Clarke, B.: Climate change increased extreme monsoon rainfall, flooding highly vulnerable communities in Pakistan, Environmental Research: Climate, 2, 025001, https://doi.org/10.1088/2752-5295/acbfd5, 2023. a
Planet: Daily Earth Data to See Change and Make Better Decisions, Planet [data set], https://www.planet.com/, last access: 10 August 2023. a
Rada Giacaman, C. A. and Schoof, C.: Channelized, distributed, and disconnected: spatial structure and temporal evolution of the subglacial drainage under a valley glacier in the Yukon, The Cryosphere, 17, 761–787, https://doi.org/10.5194/tc-17-761-2023, 2023. a
Röthlisberger, H.: Water Pressure in Intra- and Subglacial Channels, J. Glaciol., 11, 177–203, https://doi.org/10.3189/S0022143000022188, 1972.
Rott, H. and Mätzler, C.: Possibilities and Limits of Synthetic Aperture Radar for Snow and Glacier Surveying, Ann. Glaciol., 9, 195–199, https://doi.org/10.3189/S0260305500000604, 1987. a
Sahr, K.: Hexagonal discrete global grid systems for geospatial computing, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 22, 363–376, 2011. a
Sakai, A.: Glacial lakes in the Himalayas: a review on formation and expansion processes, Global Environ. Res., 16, 23–30, 2012. a
Sakai, A. and Fujita, K.: Formation conditions of supraglacial lakes on debris covered glaciers in the Himalaya, J. Glaciol., 56, 177–181, https://doi.org/10.3189/002214310791190785, 2006. a
Scher, C., Steiner, N. C., and McDonald, K. C.: Mapping seasonal glacier melt across the Hindu Kush Himalaya with time series synthetic aperture radar (SAR), The Cryosphere, 15, 4465–4482, https://doi.org/10.5194/tc-15-4465-2021, 2021. a
Schmitt, A., Wendleder, A., and Hinz, S.: The Kennaugh element framework for multi-scale, multi-polarized,multi-temporal and multi-frequency SAR image preparation, ISPRS J. Photogramm., 102, 122–139, https://doi.org/10.1016/S0031-3203(00)00136-9, 2015. a, b
Schmitt, A., Wendleder, A., Kleynmans, R., Hell, M., Roth, A., and Hinz, S.: Multi-Source and Multi-Temporal Image Fusion on Hypercomplex Bases, Remote Sens.-Basel, 12, 2083–2096, https://doi.org/10.3390/rs12060943, 2020. a, b, c
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010. a
Shi, J. and Dozier, J.: Inferring snow wetness using C-band data from SIR-C's polarimetric synthetic aperture radar, IEEE T. Geosci. Remote, 33, 905–914, https://doi.org/10.1109/36.406676, 1995. a
Stevens, L. A., Nettles, M., Davis, J. L., Creyts, T. T., Kingslake, J., Hewitt, I. J., and Stubblefield, A.: Tidewater-glacier response to supraglacial lake drainage, Nat. Commun., 13, 1–11, https://doi.org/10.1038/s41467-022-33763-2, 2022. a
Strozzi, T., Luckman, A., Murray, T., Wegmuller, U., and Werner, C. L.: Glacier motion estimation using SAR offset-tracking procedures, IEEE T. Geosci. Remote, 40, 2384–2391, https://doi.org/10.1109/TGRS.2002.805079, 2002. a, b
Sugiyama, S., Skvarca, P., Naito, N., Enomoto, H., Tsutaki, S., Tone, K., Marinsek, S., and Aniya, M.: Ice speed of a calving glacier modulated by small fluctuations in basal water pressure, Nat. Geosci., 4, 597–600, https://doi.org/10.1038/ngeo1218, 2011. a
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and Huybrechts, P.: Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage, Nature, 469, 521–524, https://doi.org/10.1038/nature09740, 2011. a
Thayyen, R. J. and Gergan, J. T.: Role of glaciers in watershed hydrology: a preliminary study of a ”Himalayan catchment”, The Cryosphere, 4, 115–128, https://doi.org/10.5194/tc-4-115-2010, 2010. a
TU Berlin: The High Asia Refined analysis (HAR), TU Berlin [data set], https://www.tu.berlin/klima/forschung/regionalklimatologie/hochasien/har, last access: 10 August 2023. a
Van Wychen, W., Burgess, D. O., Gray, L., Copland, L., Sharp, M., Dowdeswell, J. A., and Benham, T. J.: Glacier velocities and dynamic ice discharge from the Queen Elizabeth Islands, Nunavut, Canada, Geophys. Res. Lett., 41, 484–490, https://doi.org/10.1002/2013GL058558, 2014. a
Vincent, C. and Moreau, L.: Sliding velocity fluctuations and subglacial hydrology over the last two decades on Argentière glacier, Mont Blanc area, J. Glaciol., 62, 805–815, https://doi.org/10.1017/jog.2016.35, 2016. a, b
Wang, X., Tolksdorf, V., Otto, M., and Scherer, D.: WRF-based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new version of the High Asia Refined analysis, Int. J. Climatol., 41, 743–762, https://doi.org/10.1002/joc.6686, 2021. a, b
Watson, C., Quincey, D., Carrivick, J., and Smith, M.: The dynamics of supraglacial ponds in the Everest region, central Himalaya, Global Planet. Change, 142, 14–27, https://doi.org/10.1016/j.gloplacha.2016.04.008, 2016. a
Weertman, J.: The Theory of Glacier Sliding, J. Glaciol., 5, 287–303, https://doi.org/10.3189/S0022143000029038, 1964. a
Wegmüller, U., Werner, C., Strozzi, T., Wiesmann, A., Frey, O., and Santoro, M.: Sentinel-1 Support in the GAMMA Software, Procedia Comput. Sci., 100, 1305–1312, https://doi.org/10.1016/j.procs.2016.09.246, 2016. a
Wendleder, A., Schmitt, A., Erbertseder, T., D'Angelo, P., Mayer, C., and Braun, M. H.: Seasonal Evolution of Supraglacial Lakes on Baltoro Glacier From 2016 to 2020, Front. Earth Sci., 9, 1–16, https://doi.org/10.3389/feart.2021.725394, 2021b. a
Wendleder, A., Mix, V., and Schmitt, A.: The Glacier Zone Index applied on the Manson Icefield, EUSAR 2022, 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022, ISBN 978-3-8007-5823-4, 1–5, 2022. a
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling channelized and distributed subglacial drainage in two dimensions, J. Geophys. Res.-Earth, 118, 2140–2158, https://doi.org/10.1002/jgrf.20146, 2013. a
Østrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges, Geographic Annals, 41, 228–230, https://doi.org/10.1007/s00477-018-1605-2, 1959. a
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier,...