Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1085-2024
https://doi.org/10.5194/tc-18-1085-2024
Research article
 | 
05 Mar 2024
Research article |  | 05 Mar 2024

Velocity variations and hydrological drainage at Baltoro Glacier, Pakistan

Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun

Related authors

Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022,https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Combining TerraSAR-X and time-lapse photography for seasonal sea ice monitoring: the case of Deception Bay, Nunavik
Sophie Dufour-Beauséjour, Anna Wendleder, Yves Gauthier, Monique Bernier, Jimmy Poulin, Véronique Gilbert, Juupi Tuniq, Amélie Rouleau, and Achim Roth
The Cryosphere, 14, 1595–1609, https://doi.org/10.5194/tc-14-1595-2020,https://doi.org/10.5194/tc-14-1595-2020, 2020
Short summary
SAR-SHARPENING IN THE KENNAUGH FRAMEWORK APPLIED TO THE FUSION OF MULTI-MODAL SAR AND OPTICAL IMAGES
A. Schmitt and A. Wendleder
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 133–140, https://doi.org/10.5194/isprs-annals-IV-1-133-2018,https://doi.org/10.5194/isprs-annals-IV-1-133-2018, 2018
LONG-TERM MONITORING OF WATER DYNAMICS IN THE SAHEL REGION USING THE MULTI-SAR-SYSTEM
A. Bertram, A. Wendleder, A. Schmitt, and M. Huber
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 313–320, https://doi.org/10.5194/isprs-archives-XLI-B8-313-2016,https://doi.org/10.5194/isprs-archives-XLI-B8-313-2016, 2016

Related subject area

Discipline: Glaciers | Subject: Glacier Hydrology
Hydrological response of Andean catchments to recent glacier mass loss
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024,https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast Greenland
Katrina Lutz, Lily Bever, Christian Sommer, Angelika Humbert, Mirko Scheinert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1244,https://doi.org/10.5194/egusphere-2024-1244, 2024
Short summary
Characterizing sub-glacial hydrology using radar simulations
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024,https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Seasonal to decadal dynamics of supraglacial lakes on debris-covered glaciers in the Khumbu region, Nepal
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024,https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
A conceptual model for glacial lake bathymetric distribution
Taigang Zhang, Weicai Wang, and Baosheng An
The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023,https://doi.org/10.5194/tc-17-5137-2023, 2023
Short summary

Cited articles

Armstrong, W. H., Anderson, R. S., and Fahnestock, M. A.: Spatial Patterns of Summer Speedup on South Central Alaska Glaciers, Geophys. Res. Lett., 44, 9379–9388, https://doi.org/10.1002/2017GL074370, 2017. a
Bartholomaus, T., Anderson, R., and Anderson, S.: Response of glacier basal motion to transient water storage, Nat. Geosci., 1, 33–37, https://doi.org/10.1038/ngeo.2007.52, 2008. a
Benn, D. I., Thompson, S., Gulley, J., Mertes, J., Luckman, A., and Nicholson, L.: Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss, The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, 2017. a, b
Benn, D. I., Fowler, A. C., Hewitt, I., and Sevestre, H.: A general theory of glacier surges, J. Glaciol., 65, 701–716, https://doi.org/10.1017/jog.2019.62, 2019. a, b, c
Berthier, E. and Brun, F.: Karakoram geodetic glacier mass balances between 2008 and 2016: persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier, J. Glaciol., 65, 494–507, https://doi.org/10.1017/jog.2019.32, 2019. a
Download
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.