Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-539-2023
https://doi.org/10.5194/tc-17-539-2023
Research article
 | 
07 Feb 2023
Research article |  | 07 Feb 2023

Detection of ice core particles via deep neural networks

Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on tc-2022-148', Anonymous Referee #1, 19 Oct 2022
    • AC1: 'Reply on RC1', Niccolò Maffezzoli, 16 Dec 2022
  • RC2: 'Comment on tc-2022-148', Anonymous Referee #2, 28 Nov 2022
    • AC2: 'Reply on RC2', Niccolò Maffezzoli, 16 Dec 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (02 Jan 2023) by Benjamin Smith
AR by Niccolò Maffezzoli on behalf of the Authors (02 Jan 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (18 Jan 2023) by Benjamin Smith
AR by Niccolò Maffezzoli on behalf of the Authors (19 Jan 2023)  Manuscript 
Download
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.