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Abstract. Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic

activity and aridity. For some of them, the analytical detection rely on intensive bench microscopy investigation and requires

dedicated sample preparation steps. Both are laborious, require in-depth knowledge and often restrict sampling strategies.

To help overcome these limitations, we present a framework based on Flow Imaging Microscopy coupled to a deep neural

network for autonomous image classification of ice core particles. We train the network to classify 7 commonly found classes:5

mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen (Corylus avellana, Quercus robur,

Quercus suber) and contamination particles that may be introduced onto the ice core surface during core handling operations.

The trained network achieves 96.8% classification accuracy at test time. We present the system’s potential and its limitations

with respect to the detection of mineral dust, pollen grains and tephra shards, using both controlled materials and real ice

core samples. The methodology requires little sample material, is non destructive, fully reproducible and does not require any10

sample preparation procedures. The presented framework can bolster research in the field, by cutting down processing time,

supporting human-operated microscopy and further unlocking the paleoclimate potential of ice core records by providing the
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opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous

flow analysis workflow are also presented.

1 Introduction15

Ice cores provide some of the most valuable continuous records of the Earth’s past climate. While the oldest Antarctic and

Greenland cores date back respectively to 800,000 and 125,000 years ago and register variability of climate parameters at

hemispheric scales (North Greenland Ice Core Project members, 2004; EPICA community members, 2004), ice stored in

glaciers and small ice caps located at lower latitudes typically contain fingerprints of local to regional climate changes on

centennial to millennial timescales (Schwikowski, 2004). The analytical detection of impurities contained in the ice matrix al-20

lows the production of past climate records at various spatial and temporal scales. Alongside gas bubbles and soluble chemical

compounds, the ice matrix stores insoluble particulate matter, hereafter referred to as ‘particles’. Among the types of particles

is mineral dust, the glass component of volcanic ash, pollen grains and other biological matter, as well as microfossils sourced

from oceans or lakes such as diatoms and foraminifera. Each particle type carries its own climate significance and its concen-

tration depends on factors such as the source strength and emission mechanisms, the relative distance between core site and25

source region, as well as parameters controlling atmospheric transport and deposition.

By far the most abundant particle type in ice cores are mineral dust particles, that are sourced from continental surfaces and

are transported and dry or wet deposited onto ice sheets and glaciers (Legrand and Mayewski, 1997). The detection of dust is

fundamental to investigate the extent of arid areas in the past, the paleo-atmospheric circulation and to assess the role of mineral

dust aerosol in Quaternary climate changes (Petit et al., 1999; Lambert et al., 2008). Thanks to its preservation, dust records30

can be used to synchronize deep ice cores in the absence of other proxies, thus supporting ice core dating (e.g. Bohleber et al.,

2018; Eichler et al., 2000; Dome Fuji Ice Core Project Members, 2017). Dust measurements are routinely carried out while

melting ice cores in Continuous Flow Analysis setups (CFA, Bigler et al., 2011) using optical systems such as the laser-based

Klotz Abakus sensor. As the abundance of dust particles is orders of magnitude higher than other insoluble particles, Abakus

measurements are commonly associated with dust, despite the instrument being actually insensitive to the type of particle35

entering the detector. Additionally, Abakus values require an accurate calibration with an independent technique, typically the

Coulter counter (CC), an electrical-based analyzer that operates in discrete mode and cannot be run on CFA setups (Petit et al.,

1981). The mismatch and calibration between the Abakus and the CC impurity detection is an active research topic within the

ice core community (Simonsen et al., 2018). The higher accuracy of the CC comes at the expense of its discrete mode of use;

moreover it is also particle insensitive.40

Volcanic ash deposits in ice cores can contain volcanic minerals, rock fragments as well as volcanic glass shards. Across

the spectrum of volcanic material, in this work we target ’cryptotephras’, glass shards from individual eruptions that can form

stratigraphically distinct deposits in ice cores, as well as in marine and terrestrial sediments, that are invisible to the naked eye

(e.g. Lowe and Hunt, 2001; Turney et al., 1997). The identification of volcanic glass (hereafter referred to as tephra) provides

direct evidence of past volcanic activity (Abbott and Davies, 2012; Sigl et al., 2015) and provides a crucial tool to date and45
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synchronize paleorecords (ice, marine and lake) and therefore to establish absolute and synchronized chronologies (Lowe,

2011). The analytical detection of tephra layers in ice cores is typically carried out using different methods, or in combina-

tion. Potential volcanic layers can be identified by electrical conductivity or sulfate concentration measurements during CFA

analyses (e.g. Wolff et al., 1995), at high resolution. Not all tephra layers, particularly cryptotephras, however, correspond to

acidity or sulfate peaks and vice versa, given the different emission, transport and deposition of gaseous species and particulate50

volcanic material (Legrand and Mayewski, 1997; Davies et al., 2010). For example, in the glacial period, tephra-rich deposits

consistently lack coeval chemostratigraphic peaks, partially due to signal neutralization by dust (Bourne et al., 2015). Manual

discrete sub-sampling of such selected intervals of interest is also carried out to maximize tephra layer identification. During

this method, ice samples are individually processed and manually inspected using optical bench microscopy (e.g. Bourne et al.,

2015; Cook et al., 2018A). If the presence of cryptotephra is confirmed, the glass shards are individually counted. This makes55

the identification of tephra extremely time consuming and in some cases serendipitous. While attempts have been made to

automate particle detection (e.g. Van der Bilt et al., 2021, in sediment records), the methodology for investigating tephra in ice

cores typically requires a huge time commitment by tephra experts.

Pollen analyses from snow and ice records provide information on past vegetation and atmospheric circulation changes

(Bourgeois, 2000). Over relatively short timescales, pollen records with springtime maxima associated with vegetation blooms60

can also be used as a dating method (Nakazawa et al., 2004; Festi et al., 2021). Like tephra, pollen analyses need several and

laborious preprocessing steps in which discrete ice samples are cut, melted, and pre-concentrated (e.g. Festi et al., 2015, and

references therein). Finally, the presence and the number of pollen grains is manually evaluated by palynologists via optical

bench microscopy. In summary, extraction and detection of climate-relevant ice core particles is extremely laborious.

Over the last ten years neural networks and in particular convolutional neural networks (CNN) have become the state-65

of-the-art methods in digital image classification tasks. Since the proposed architecture of Krizhevsky et al. (2012), the field

experienced rapid growth that spawned major breakthrough and optimization of a number of aspects including increasing model

depth (Simonyan and Zisserman, 2014), understanding the dynamics of internal layers (Zeiler and Fergus, 2014) and facilitating

the gradient flow (He et al., 2016). In the ImageNet classification challenge (Deng et al., 2009), CNN-based architectures have

surpassed human accuracy (He et al., 2015). Despite the advances of such techniques, their application to environmental studies70

has lagged behind to very few and recent examples (Kerr et al., 2020; Viertel and König, 2022).

In this work we investigate the extent to which autonomous and simultaneous detection and classification of ice core particles

can be achieved with deep neural networks. In our setup, to generate the ice particle imagery, we rely on a flow imaging mi-

croscopy instrument (the FlowCam, Fig. A1), able to produce images of particles captured within a liquid stream continuously

pumped through the instrument. We develop a mixed convolutional and fully connected neural network to classify the imagery75

into 6 classes of particles: mineral dust, tephra (basaltic and felsic), and three pollen grains potentially present in alpine ice

records: Corylus avellana, Quercus robur and Quercus suber. An additional 7-th class of Contamination/Blurry particles is

included as a control channel for the model to be able to identify those particles that do not provide climate information.
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2 Methods

2.1 The FlowCam: settings and image and feature extraction80

The FlowCam instrument (Yokogawa Fluid Imaging Technologies, VS-I-B-model) located at the Earth Surface Sediment Lab-

oratory (EARTHLAB, University of Bergen, Norway) is used to capture images of particles in ultrapure water or ice meltwater

samples. The FlowCam is a benchtop flow imaging cytometer equipped with a visible range optical camera. The liquid sample

is injected into the system by manual pipetting and it is drawn by a syringe pump to a quartz flow cell. Alternatively, a connec-

tion tubing can allow sampling from discrete sample vials or from a continuous flow system (Appendix A). The flow cell used85

in our setup (depth=80 µm; width=570 µm) allows the flow of particles up to 80 µm in diameter in the maximum dimension.

A 1.0 mL volume syringe pump is set to operate at a flow rate of 0.02 mL/min. While passing through the flow cell the sample

is imaged by a camera equipped with a 20x magnification objective. The camera flash duration is set to 65 µs and is operated

at the maximum 22 frames per seconds. With the aforementioned settings the imaged sample volume, i.e. the percentage of

volume imaged by the camera, is 41.8 %. This parameter is determined by the combination of camera frame rate, pump speed90

and flow cell geometry. The system optics determines a calibration factor of 0.2752 µm/pixel in the resulting monochrome

1280x960 pixels 8-bit TIFF images.

The mechanics of particle image creation is performed by the native FlowCam software (VisualSpreadsheet v3.4). All

camera image frames captured during analyses are compared to a calibration image acquired prior to the analysis (Fig. A1).

In every image, the pixels are considered ‘signal’ (i.e. set to 1) if their intensities are higher or lower than their intensities in95

the calibration image by a threshold value. If the pixel intensity differences do not exceed the threshold, they are considered

‘background’ and set to 0. Once the signal-background binary image is created, the single particle images are extracted by

segmenting out the pixels flagged as signal (Fig. A1). Each created image thus represents one particle. The threshold value,

set to 18, and the camera focus are optimized by acquiring images of spherical polystyrene 25 µm beads and by minimizing

the standard deviation of the resulting size distribution (Fig. S1). For each acquired particle image, the FlowCam software100

calculates a number of numerical features, hereafter also referred to as metadata, mostly reflecting the particles’ geometrical

properties. These numerical features are calculated by classic computer vision algorithms. In this work we use n=34 metadata

(Appendix B).

2.2 Training dataset

The classification model is based on a supervised learning approach. The training dataset consists of images and related105

metadata for 7 classes of particles: mineral dust, tephra (basaltic and felsic), three pollen species: Corylus avellana, Quercus

robur and Quercus suber and an additional class that consists of contamination particles that are found on the external surface

of ice cores (Table 1, Figs. C1 to C7). Each item of the training dataset consists of a particle image and the corresponding array

of 34 numerical metadata. The training dataset of each class (except for the contamination class) is created by preparing and

measuring samples that contain only one type of particle so that each acquisition yields a purely 1-class batch. The samples110
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are created by preparing solutions in ultrapure water and multiple acquisitions are repeated until several thousand images are

collected. Every image of the training dataset is visually inspected and validated by the human eye.

Table 1. Training dataset.

Class Sample type Sample origin Approximate size range # training items

1. Dust Conundrum powder (Al2O3) Standard Reference Material (ERM-FD066) < 10 µm 8000

2. Felsic tephra Campanian Ignimbrite Southeast Romania (43-44° N, 23-24° E) (8, 80) µm 7125

3. Basaltic tephra Grímsvötn (Iceland) Kirkjubaejarklaustur, Iceland (63.78° N, 18.09° W) (8, 80) µm 6271

4. Pollen C. avellana pollen Austria (47° 16’ 14.31” N, 11° 22’ 29.22“ W) (10, 40) µm 47223

5. Pollen Q. robur pollen Portugal (41.476-41.155° N, 8.701-8.563° W) (10, 40) µm 35276

6. Pollen Q. suber pollen Portugal (41.155-41.151° N, 8.565-8.660° W) (10, 40) µm 31745

7. Contamination/Blurry Outer core ice samples GRIP ice core external layer (5, 80) µm 11439

• The training dataset of dust particles is created by measuring water solutions of FD066 (Linsinger et al., 2019, Table 1,

Fig. C1), an aluminum oxide powder containing particles with a mean size distribution of 2.5 µm and rarely exceeding

6 µm (Table 2). Such a dust training set is therefore suited to mimic dust found in inland Antarctic and Greenland ice115

cores, typically below 4 µm (e.g. Delmonte et al., 2002; Ruth et al., 2003).

• Two tephra classes, felsic and basaltic, are included in the training dataset, primarily because of their detectable color

differences that result from a different geochemistry. Felsic (silica-rich) tephras are typically lighter in color, while

basaltic ash is darker. The felsic tephra training dataset consists of Campanian Ignimbrite volcanic ash from the 39.3±0.1

ka BP Phlegrean Fields eruption (Fedele et al., 2003, Table 1, Fig. C2). The phonolitic-trachytic (∼60 wt.% SiO2) ash120

was sampled ∼1,000 km from its source (Veres et al., 2013). Our basaltic tephra consists of volcanic ash from the

Icelandic Grímsvötn 2011 eruption (Table 1, Fig. C3). Ash samples were collected on May 22, 2011 in the town of

Kirkjubæjarklaustur, about 70 km southwest of the Grímsvötn caldera. After collection, samples were dried and stored in

plastic beakers. Ashes of both types were dry sieved at 63 µm to limit the maximum dimension and fit the flow cell’s max.

80 µm size constraint (min. ∼8 µm). This range (8-80 µm) is consistent with the size that is typically considered during125

cryptotephra manual counting by bench microscopy (Gow and Meese, 2007; Narcisi et al., 2012; Abbott and Davies,

2012; Plunkett et al., 2020). It is important to note that, for both tephra classes, only those tephra images that could be

clearly validated by an experienced tephra analyst were included in the training dataset. This resulted in discarding a

very large fraction of blurry imagery. This decision was adopted to drive the model to yield clearer tephra predictions

and reduce ambiguous predictions (i.e. for tephra, purity is prioritized over efficiency).130

• Three pollen species are included in the training dataset: C. avellana, Q. robur and Q. suber (Table 1, Figs. C4, C5, C6).

C. avellana branches were collected near Innsbruck (Austria) in February 2019 from multiple trees within a radius of

500 m. The inflorescence was matured in the lab and the samples prepared by mixing together pollen from different trees.

Both Quercus species were collected in Portugal and treated similarly. Occasionally, if pollen grains flow at the boundary
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of the camera field of view, they result partially captured. We decided to keep fractional pollen images to increase the135

sensitivity of the model to correctly classify pollen, even when grains are only partially visible.

• The seventh class (Contamination/Blurry) consists of two types of particles. The first includes ‘contamination’ particles

from the GRIP ice core external surface (Table 1, Fig. C7). The ice core surface typically contains particles from the

core drilling, cutting and handling operations such as paper wrap, glove clothing fibers and graphite from the pencil

used to mark the core sections. The second type of particles added to this class includes relatively large and poor quality140

images, i.e. out of focus. The particles collected for this class are obtained from GRIP sample measurements followed by

offline manual validation and labeling. While blurry images is an intrinsic limitation of this methodology, the Contam-

ination/Blurry class serves the purpose of an important controlled channel for the model to be able to identify particles

that do not carry climate significance.

2.3 Model145

2.3.1 Hybrid deep neural network

The developed model is a hybrid network that supports mixed data inputs (Fig. 1). It is composed of two branches, a convo-

lutional neural network (CNN) and a multilayer perceptron (MLP), fed respectively by particle images and the corresponding

34-dimensional numerical feature vectors (metadata). The CNN consists of a resnet-18 architecture (He et al., 2016). This net-

work is composed of multiple convolution layers that progressively increase the number of filters while decreasing the feature150

map size. Batch Normalization (BN) layers are placed right after each convolution layer and before ReLU (Rectified Linear

Unit) activations. The network ends with an average pooling layer and a final FC (fully connected) layer that compresses

the image into a 64-d embedding. This vector is concatenated to the output of the MLP, formed by two series of FC-BN-

ReLU-Dropout layers followed by a final FC layer that produces a 32-d representation. Following the concatenation of the two

network branches, a first FC-BN-ReLU stack is placed before the final FC layer that precedes a sigmoid activation.155

2.3.2 Data preprocessing and augmentation

All images are reshaped by linear interpolation to 128x128 pixels. The downside of reshaping compared to zero-padding (i.e.

increasing the image size by adding zeros to the borders) is that warping effects are introduced in images with large height to

width differences, and the fact that the size information is lost. However, zero-padding to the largest image size would largely

increase the computational complexity. We also argue that the size information is retained by the model in the metadata branch,160

that includes multiple features related to the geometry and the size of the particles. A per-image normalization to zero mean

and unit variance is used to preprocess the images. Data augmentation during training consists of random rotations (p=0.5), as

either horizontal, vertical or both horizontal and vertical flips. All metadata are also normalized by scaling to zero mean and

unit variance.
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Figure 1. Model architecture. The top branch of the network is a resnet-18 CNN (He et al., 2016). BN and ReLU layers are omitted for

clarity, as well as skip connections. The bottom branch operates on the numerical features and consists of 3-layer multilayer perceptron. The

separate outputs of the two branches are concatenated into a final classification branch. Indicated in brackets are the input and output shapes

of some layers along the network.

2.3.3 Model training, validation and test165

The data are split into three separate datasets: training, validation and test. Both the validation and test datasets consist of a

random 500 item/class subset, for a total of 3500 items. A transfer learning approach is adopted for the convolutional branch

of the network as the CNN pretrained on the Imagenet dataset is found to train faster. The whole network is trained on mini

batches of 512 items using a binary cross entropy loss. The training dataset size of each class is indicated in Table 1. Since the

training dataset is unbalanced, a weighted loss is implemented by enforcing a different weight w for each class c (Eq. 1):170

wc =
max

c
size(c)

size(c)
, c ∈ classes. (1)

Underfitting and overfitting is checked after every epoch (a cycle of training the network) by monitoring the loss and the

accuracy on the validation dataset. Adaptive AdamW is used as optimizer (Loshchilov and Hutter, 2017), with a learning rate

of 10−4, betas=(0.9, 0.999), a weight decay of 0.01 and a dedicated scheduler that imposes a learning rate decay of 0.1 every 5

epochs. The best hyperparameters (dropout probabilities, number and dimensionality of FC layers) are found by random search175

by maximizing the accuracy on the validation dataset. The final best model is evaluated on the test dataset.
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Figure 2. (a) Model loss (dashed) and accuracy (solid) evaluated during training (black) and validation (gray). (b) Confusion matrix of the

best model evaluated on the test dataset. The accuracy across all classes is 96.8%. Most misclassifications occur within the two Quercus

classes.

The model converges to an average 96.8% accuracy across all classes in 15 epochs (Fig. 2). Dust and C. avellana images are

classified with very high accuracy. Slightly lower accuracy is found among the two tephra classes, with on average 1% particles

classified as the wrong tephra class and some 1-2% misclassified as ‘Contamination’. The Quercus species are identified with

an accuracy of ∼90-95%, the remaining fraction being misclassified mostly as the wrong Quercus. No misclassification is180

found between the three pollen and all other classes.

3 Results and discussion

The following discussion is divided into three sections. In Section 3.1 we investigate the FlowCam ability to correctly detect

dust, with particular focus on the reconstruction of the size distribution and the mass concentrations, followed by the compari-

son with the Coulter Counter on a number of alpine ice core samples. In section 3.2 we discuss pollen and the representativeness185

of their training datasets. In Section 3.3 the model is deployed on Greenland ice core samples containing known volcanic ash

horizons.

3.1 Dust

3.1.1 Standard Reference Material: size reconstruction, LODs and mass concentrations

The certified reference material ERM FD066 Aluminum Oxide powder is used to evaluate the performance of the system as190

a dust detector. We measure a solution containing FD066 powder, run the model on the acquired images and metadata and
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evaluate the Area Based Diameter distribution (ABD, Appendix B). All particles are classified as ‘dust’ by the model. The

number-weighted ABD distribution percentiles are consistent within 1σ to the certified values (Table 2, Fig. S2).

The mass concentration of a sample can be calculated by summing the particles ABD-based volumes, dividing by the sample

imaged volume and multiplying by the density. The Aluminium Oxide density is 3.96 g/cm3. An alternative metric to the ABD195

is the Equivalent Spherical Diameters (ESD, Appendix B), a measure of an object size based on its orientation. However, we

find that ESD volume quantifications are not consistent with the expected volume distribution of FD066 samples (not shown),

in agreement with previous studies that found that ESD leads to overestimate volumes of particles with extended parts and

appendages (Karnan et al., 2017; Kydd et al., 2018). Our results show that the ABD metric can be therefore considered

appropriate for reconstructing the size of dust particles with a distribution similar to that of the FD066 material, as well as of200

spheres (Fig. S1).

Table 2. Comparison between the FD066 ABD size distributions certified by Scanning Electron Microscopy (Linsinger et al., 2019) and

calculated using the FlowCam (this study).

FD066 ABD size distribution

percentiles

ABD (µm, ±1σ) certified by SEM

(Linsinger et al., 2019)

ABD (µm) reconstructed by FlowCam

(this study)

x5,0 1.07 ± 0.23 1.14

x10,0 1.28 ± 0.24 1.06

x25,0 1.71 ± 0.28 2.07

x50,0 2.4 ± 0.4 2.5

x75,0 3.3 ± 0.4 3.3

x90,0 4.4 ± 0.4 4.5

x95,0 5.1 ± 0.4 5.1

Given the low dust concentrations in ice core records, it is crucial to investigate the blank levels of the analytical system

as well as the impurity content of the used glassware. We define system blank as the instrumental response to ultrapure water

(UPW, 18.2MΩ/cm) directly injected into the system. The system blanks can be thought of as the blank level of a CFA system,

in which no discrete vials are used and the sample stream directly feeds the FlowCam from the melt head (although a tubing205

connection would be needed). We define procedural blanks as the instrumental response to UPW stored in sterile ultra-clear

polypropylene VWR centrifuge tubes (model 21008-216) prewashed 5 times with UPW. No acids are used. A set of n=91

system blanks and n=63 procedural blanks are investigated (Fig. 3). The model classifies the totality of particles in both the

system and procedural blanks as dust, with diameters rarely exceeding 3 µm (Fig. 3). The limits of detection (LOD) are

calculated as the median plus 3 standard deviations. The mass concentration and number concentration LODs of the system210

blanks are respectively 6 ppb and 1200 #/mL (#/mL = number or particles per unit of sample volume). The mass concentration

and number concentration LODs of the procedural blanks are respectively 11 ppb and 3400 #/mL. In comparison, the LOD

of the CC is reported as 2 ppb (Ruth et al., 2008). The lowest dust concentrations in ice records are found in Antarctica

during interglacial periods, with levels of about 10 ppb over the plateau (Lambert et al., 2008) and a few ppb towards high
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Figure 3. Analysis of n=91 system blanks (black, top row) and n=63 procedural blanks (red, bottom row). Median mass concentrations

(left distributions) of 1.0±1.6 ppb(1σ) and 2.4±2.8 ppb(1σ) result in a 3σ LOD of 6 ppb for system blanks and 11 ppb for procedural

blanks respectively. The middle plots show the number concentration distributions and respective LODs. The right plots indicate the size

distributions of blank particles in system (top, N=2864) and procedural (bottom, N=3945) blanks, rarely exceeding 3 µm. All particles are

classified as dust by the model. The mass concentrations are calculated assuming a density of 2.5 g/cm3.

accumulation coastal sites (Vallelonga et al., 2004). The FlowCam LODs thus allow quantification of dust in all sites globally215

except for coastal Antarctic interglacial records. It is likely possible to further lower the instrument LODs by operating the

FlowCam inside a clean room.

We next evaluate the quantification of dust mass concentrations, by comparing the FlowCam to the Coulter Counter. Discrete

dust samples for FlowCam analyses are prepared by diluting a known mass of FD066 material (weighted on a 10−6 g accuracy

scale) in ultrapure water, and subsequent dilutions using VWR centrifuge tubes. The concentration of the final samples ranged220

from 44 ppb to 14 ppm (Fig. 4). All acquired particle images are classified as dust by the model. The ABD-based volumes are

converted to mass using the FD066 density, 3.96 g/cm3. Similarly prepared samples are measured by Coulter Counter at the

University of Milano-Bicocca, by adopting the same analytical steps as described in (Baccolo et al., 2021). The LOD of the

CC, calculated as 3 standard deviations above the average of n=7 UPW samples, is 10 ppb. For both the FlowCam and CC

experiments the blank levels are subtracted to the concentration values of the samples. The FlowCam mass concentrations are225

consistent with the expected values and a good linear agreement is found across the investigated range (Fig. 4), spanning from

low Antarctic to high mid-latitude glacier dust levels. The residual distribution (mean of 0.7%, 1σ=14%) suggests an accurate

combination of camera focus and particle volume estimation and no systematic uncertainty in the volume quantification. The
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Figure 4. Comparison between nominal and measured concentrations of FD066 dust samples using the FlowCam and the Coulter Counter. An

orthogonal distance regression on the FlowCam data (black line with 3σ confidence interval in gray) shows good linearity over three orders of

magnitude. The red line refers to the linear fit on the CC data. The y-error bars reflect 1 standard deviation of multiple repetitions of the same

sample. All x-errors are estimated as 10% of the FD066 prepared concentrations and account for the uncertainties in the dilutions and plastic

adsorption effects. Both insets refer to the FlowCam measurements: the top inset shows the relative standard deviation (RSD) distribution;

the bottom inset shows the distribution of the residuals, defined as the difference between the expected and measured concentrations. The top

bars indicate the approximate ranges of dust concentration in polar and mid-latitude records.

precision is evaluated by multiple repetitions of the same samples (typically 3 to 5, shown as the error bars on the points

and in the RSD distribution) and averages 19% (1σ=11%). The CC measurements also show good linearity (q=0.001±0.002,230

m=1.05±0.05). This experiment shows that both instruments yield accurate size and volume reconstructions for the irregularly

shaped FD066 particles.

3.1.2 Ice core dust mass concentrations

The FlowCam and the CC mass concentration reconstructions are compared by analyzing n=24 ice samples from the Quelccaya

ice cap (Peru, Reis et al., 2022). Since the CC is particle insensitive for this comparison the classifier coupled to the FlowCam235
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Figure 5. Mass concentration CDF ratios between the CC and the FlowCam as a function of a size cutoff. The best agreement is found at a

cutoff value of 10 µm. If larger particles are included in the quantification of the concentration, the FlowCam concentrations are consistently

lower than the CC.

is switched off. Two aliquots for each sample are measured by CC (Milan, Italy) and by FlowCam (Bergen, Norway). The CC

is operated with a 2-60 µm capillary to accommodate the large particles common in alpine records. Each sample quantification

results from the average of three measurements. In the calculations of the mass concentrations a density of 2.5 g/cm3 is

assumed.

The samples exhibit a very large size distribution, with particle sizes extending to 60 µm and a volume weighted size240

distribution centered between 10 and 20 µm. The dust concentrations (we here refer to the total insoluble content as dust for

simplicity) range from 1 to 15 ppm and a median of 2 ppm. The comparison of the two instruments across the batch of 24

samples reveals that the FlowCam mass concentrations are systematically lower than those measured by CC. In particular,

the cumulative distribution function of the mass concentration, CDF (x) =
∫ x

0
conc(z)dz, reveals that fewer big particles are

captured by the FlowCam compared to the CC, explaining the lower values of the FlowCam (Fig. S3).245

We argue that the causes are twofold. First, the FlowCam images a very low amount of volume (the highest efficiency

achievable in our setup, 41.8%, is reached by minimizing the pump rate, 0.02 mL/min, and maximizing the camera shutter

to 22 FPS). For example, for a 3 min analysis only 0.025 mL of sample is imaged, compared to 0.5 mL on the CC. The

low statistics has a notable effect in the estimation of the mass concentration, since big particles are rare and provide a large

contribution to the volume. The underestimation of large (≥ 50 µm) particle concentrations using the FlowCam compared to250

manual microscopy has been previously reported (Kydd et al., 2018). A possible second cause for the FlowCam undershoot

is the discrete mode of analysis. During manual sample injection into the FlowCam, big particles quickly flow through the

instrument by gravitational settling, while smaller particles remain more easily suspended in the solution and are continuously
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detected throughout the analysis time. We argue that the fast gravitational separation of particles of different sizes leads to

underestimated concentrations especially for high analysis time. It may be possible to reduce the gravitational separation by255

using a continuous-flow injection system with the tubing placed horizontally, as in an ice core CFA melting system, or by

operating in discrete mode using sample agitation equipment.

We investigate to which extent (in terms of particle size) the concentrations of the CC and the FlowCam can be compared.

For each method we calculate the concentration of all 24 samples by only considering particles smaller than a certain value,

progressively increased from 3 to 60 µm. The comparison is quantified by evaluating the slope of an orthogonal distance260

linear regression between the concentration CDFs with respect to the size cutoff (Fig. 5). The best agreement is found if only

particles up to ca. 10 µm are accounted for (m=0.86±0.16). For bigger particle sizes, the FlowCam underestimates the CC

concentrations by up to ∼3. This analysis is consistent with the good match previously found using the small-sized FD066

material (Fig. 4).

From the two FlowCam-CC comparisons carried out on the small-sized FD066 dust and on alpine samples we conclude that,265

in the experimental conditions of our setup (discrete mode of operation, 80 µm flow cell and 20x magnification), the FlowCam

is to be used for evaluating mass concentrations of particles up to only ∼10 µm. For samples containing larger particles the

mass (and number), the FlowCam concentrations will be underestimated by up to ∼3. To improve the accuracy, the statistics

at high particle sizes can be increased by i) increasing the efficiency of the instrument using larger volume cells, ii) increasing

the measurement time alongside sample agitation equipment.270

3.2 Pollen

Given the similarity of pollen grains, we investigate the representativeness of the three training datasets used to classify these

types of particles. The analysis is carried out by training the model using slightly different training datasets and by evaluating

the classification accuracy on controlled samples of specific types. Five different C. avellana types were made available for this

experiment, labeled A, B, C, D, E and they reflect samples collected from different trees within the same sampling region. We275

build three training datasets: type A, type B, and the last one prepared by mixing all five types together (referred to as Mix).

We then train the model 4 times separately using type A, type B, type Mix and all of them together (A+B+Mix), and each

time we evaluate the pollen predictions of a pure type B dataset. The training datasets of all the other classes are kept fixed. In

particular, the Q. robur and Q. suber datasets consist of two types for each one mixed together. After each training session, a

validation stage on 500 images of each type is evaluated for performance and hyperparameter tuning. No substantial change in280

any hyperparameter is found to be affecting the accuracy on the validation set, which is consistently 0.97-0.99 for C. avellana

and between 0.90-0.96 for the two Quercus species. The model trained with the Corylus A dataset yields only 48% correct

Corylus predictions, when deployed on a Corylus B sample (N=5 replicates, Table 3). It appears that the Corylus A training

dataset is not fully representative of the Corylus B sample. If the model is trained with a Corylus B, the percentage of Corylus

classification in the Corylus B sample increases to 96%. If a Corylus Mix training set is used, the correct accuracies are 97%.285

If the model is trained with all datasets joined together (A+B+Mix), the correct Corylus predictions are 98%. The best result

can therefore be achieved if the model is trained with the widest dataset in terms of particle variability.
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A similar test is carried out for the Q. robur class. The model is trained separately using a Q. robur A, a Q. robur B and

a joined Q. robur A+B dataset and used each time to classify a pure Q. robur B sample (N=3 replicate measurements). The

model is trained by keeping a fixed Corylus A+B+Mix and Q. suber A+B datasets. The results show that only 2.3% of the290

images in the Q. robur B sample are correctly classified as Q. robur if the model is trained with the Q. robur A dataset (Table

3). The correct predictions are 91% if the Q. robur B training dataset is used instead. By training using a joint Q. robur A+B

dataset, the percentage of correct robur predictions remains similar. Unlike the Corylus test, no Q. robur Mix is available.

The test on the Q. suber type is analogous to the Q. robur test. The model is trained three times separately on a Q. suber A,

a Q. suber B and on a Q. suber A+B dataset and each time used to classify a pure Q. suber B sample (N=10 measurements).295

When the model is trained with the Q. suber A dataset, only 4% of the pollen in the Q. suber B sample are correctly classified

as Q. suber (Table 3). The correct classifications rise to 90% if the model is trained with either the Q. suber B or with the Q.

suber A+B dataset.

From these tests we conclude that the representativeness of the training dataset is crucial to achieve the highest pollen

classification accuracy. For all three pollen types, the best classification is achieved with the largest training datasets. Under300

this condition the classification accuracy of C. avellana, Q. robur and Q. suber is respectively 98±1%, 91±1% and 90±3%,

similarly to what was previously found (Fig. 2b). We argue that a further increase in accuracy and a more general model may

be achieved by further increasing the training datasets in both variability and in size. As a sense of the model predicting power,

it should be noted that expert palynologists cannot efficiently classify the Q. robur and Q. suber species by looking at the

FlowCam images. The state-of-the-art classification accuracy between Q. robur and Q. suber, 98±2%, can be achieved by305

analyzing the different pollen chemical signatures by using Fourier-transform infrared spectroscopy (Muthreich et al., 2020).

We also find that the absolute number of images classified as pollen varies by just, on average, 0.4% , suggesting that pollen

detection (irrespective of the pollen class) is largely independent of the choice of the training dataset.

We finally train a model 5 times using the largest datasets: C. avellana A+B+Mix, Q. robur A+B and Q. suber A+B. The

model is then used to classify particles in three samples containing only one type of pollen. The analysis is performed on 5310

aliquots of the C. avellana sample, 3 aliquots of the Q. robur sample and 10 aliquots of the Q. suber sample. Afterwards,

the three samples are mixed together in a 1:1:1 volume ratio and the model is used to classify particles in 10 aliquots of the

mixed sample. As previously found, the model behaves well in classifying the C. avellana pollen, with 98% of all particles

classified correctly (Fig. 6, red). The classification accuracy for the Q. robur and Q. suber averages 90% accuracy (Fig. 6, blue

and green). The concentrations of the pollen species before mixing (bars) and the concentration of the species as classified by315

the model after the mixing agrees (dots) is reasonably consistent for the C. avellana and Q. robur pollen, while some departure

from the expected concentration is found for the Q. suber class. The results do not show significant differences with respect to

the model runs, suggesting that the model converges to similar parameters. However, in all separate runs a significant spread is

found between the aliquots, particularly with respect to C. avellana classification (1σ are indicated as the error bars in Fig. 6),

which suggests that robust quantification of pollen concentrations should be achieved by multiple measurements. The Q. suber320

concentration mismatch is tentatively attributed to the cell being partially clogged that led to an underestimated concentration

before mixing.
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Figure 6. Quantification of pollen concentrations in single types samples and in a mixed sample. The model was deployed to classify

and quantify pollen concentrations in three samples containing purely C. avellana (red), Q. robur (blue) and Q. suber (green) pollen. The

percentages of correct predictions among the three pollen classes are indicated in the top right axis as a function of 5 independent model

runs. One third of the sample pollen concentrations (as averages of 5, 3 and 10 aliquots respectively for C. Avellana, Q. robur and Q. suber)

are indicated as histogram bars along with 1σ error bars displayed with light colors. The model was also used to classify and quantify pollen

in a 1:1:1 mix of the original samples (dots and solid colored error bars reflect the average values and 1σ of 10 aliquot).

The pollen experiments suggest that the developed framework is promising for pollen autonomous classification under the

condition that the most representative datasets are used for training. Additionally, the representativeness of fresh pollen as a

training dataset for microfossil ice core pollen should be investigated. We also stress that, in case of low concentrations, a325

similar underestimation of the absolute number of pollen is to be expected, by a factor ∼2 (Fig. 5). Intensive analysis of alpine

ice core records (where pollen is expected) is the next logical step.

3.3 Tephra

We deployed the model to investigate the content of 12 samples from the Greenland Ice Core Project (GRIP) ice core (Table

4). Specifically, 7 of these contain known tephra deposits, selected from the tephrochronology framework of Cook et al.330

(2022), while the remaining 5 samples are known to be devoid of tephra grains (i.e. tephra grains were not observed by bench

microscopy).

The 7 tephra deposits were re-sampled, by removing a strip of 55 cm of ice (referred to as a ‘bag’) using a band saw. Each bag

strip of ice was then cut into three sections, at resolutions of 20 or 15 cm, using the same depth intervals as Cook et al. (2022)

to ensure the same deposits could be found, and thus producing replicate tephra-containing ice core samples. The 5 tephra-free335

samples were derived from ice adjoining each of the tephra layers, i.e. the remaining ice per bag. The deposits chosen for this

experiment date back to the Bølling–Allerød/Greenland Interstadial 1 (GI-1) and glacial/Greenland Stadial 2 (GS-2) periods

and comprise tephra of a similar geochemical composition as those selected for our training dataset: felsic (rhyolitic), mafic
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(basaltic), or a mix thereof. For each selected depth interval, two replicate samples are obtained: the first was analyzed for

tephra by optical bench microscopy (Cook et al., 2022); the second one is analyzed by Flow Microscopy followed by our340

particle classification model. It is important to note that, although extracted from the same horizon, the samples dedicated to

the two analyses are different and non-homogeneity can affect the lateral distribution of insoluble matter at the same depth

interval (Cederstrøm et al., 2021). Additionally, we note that the samples contain contamination particles, as the outer surface

of the ice core collects impurities from drilling and processing activities. The samples dedicated to tephra investigation have

typically been extracted from these external sections, as the analyst is able to distinguish tephra from other types of matter345

using the bench microscopy.

3.3.1 Optical microscopy for tephra analysis

The 7 samples chosen for replicate tephra analysis in this study were originally identified using optical microscopy following

the sampling methodology outlined in Cook et al. (2022). Specifically, the samples were melted, centrifuged, evaporated and

the remaining material was embedded in epoxy resin. Optical microscopy tephra counts range between 0 to 5000 shards per350

sample, corresponding to concentrations from 0 to 111 shards/mL (Table 4). The counting errors, estimated in Table 4, also

incorporate the uncertainties related to the loss of material during the centrifuge and due to adhesion onto the used plastic

tubes. It is worth noting that microscopy counts of tephra are typically only performed above a size threshold for which the

human operator is confident to differentiate tephra grains from mineral dust: ∼8 µm. Replicate counting on the same samples

would be needed to more rigorously quantify the manual counting errors.355

3.3.2 Flow Imaging Microscopy and particle classification

The samples dedicated to FlowCam analyses, whose original volumes were between 28 and 56 mL (Table 5), were concentrated

by centrifuge down to less than 0.5 mL, following the same sample processing adopted for optical microscopy (outlined in Sect.

3.3.1) for the sake of consistency, except for the embedding in epoxy resin. As an additional step, given the very high particle

concentration that would obstruct the flow cell, the samples were diluted by adding ultrapure water, between 0.5-1.0 mL. The360

imaged volume of each sample was 0.2-0.3 mL. In total, up to hundreds of thousands of images were collected per sample,

for a total of 3,085,063 images (Table 5). As expected, most particles (91-98% of the total content) are classified as dust by

the model. The remaining fraction is almost fully explained by Contamination/Blurry particles (2-9%). Their presence derives

from the nature of the analyzed samples, extracted from the core surface and thus loaded with external impurities. It is possible

that the Contamination/Blurry predictions contain some particles of climate significance but we expect this number to be very365

small. A total of n=921 particles are classified as pollen (209 C. avellana, 375 Q. robur and 337 Q. suber, Table 5). By visually

inspecting these particles it is clear that, due to their blurriness, only few of them can be confidently identified as pollen (or

spores), but the large majority of these predictions remain dubious (Fig. S5). We note that the three species of pollen used to

train the model do not fit with the spectrum of pollen species that may be found in Greenland. A better choice for polar records

would be a training dataset of Betula pollen - ubiquitous in Arctic paleoclimate records. We also argue that very likely a high370
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number of contamination particles are falsely predicted as pollen. The reason for such classification outcome by the model is

the round shape of such particles, and their similar size to that of the three pollen species (Sect. 3.3.4).

A total of n=1671 particles are classified as tephra (949 basaltic and 722 felsic, Table 5). The tephra concentrations in the

samples, irrespective of the two types, range from 3.3 to 18 #/mL (Table 5, col J). Although in the same order of magnitude,

there are significant sample-to-sample differences compared to concentrations determined by manual counting (Table 4). It375

should be noted that the samples measured using the two techniques are different and some non-homogeneities with regard to

tephra deposition can be expected (Pyne-O’Donnell, 2011). We also argue that, while the model accuracy does not depend on

the tephra concentration, human-operated microscopy is probably more effective for higher concentrations. This could explain

why the modeled concentrations are always above zero. We also note that the modeled values are expected to be underestimated

by a factor of about 2-3 from the real concentrations (Sect. 3.1.2, Fig. 5), because of fluidics/loss of material as gravitational380

settling preferentially affects large particles.

3.3.3 Human assessment of modeled tephra predictions
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Figure 7. A random subset of the AI-predicted tephras in the 3136 0-20cm GRIP sample assessed by Human#1, color coded according to

the given validation: yes (green), maybe (yellow), no (red). The particle diameters (ABD) are shown in the bottom left corners.

To further explore the model predictions and investigate the mismatch, two tephra experts were asked to assess and classify,

based on the FlowCam images, all (n=1671) modeled tephra predictions in the 12 GRIP samples (irrespective of whether they

are predicted as felsic or basaltic) into 3 classes: ‘yes’, ‘maybe’ and ‘no’ (Table 5). According to Human#1 (Human#2), of all385

1671 images 16% (2%) are positively validated as tephra, 37% (56%) are dubious and 47% (41%) are considered not tephra

(Fig. S4). Of all the AI-predicted tephras, Human#1 therefore considers 53% of them are possible tephras (‘yes’+‘maybe’),
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while for Human#2 considers them to be 58%. It should be noted however that the agreement between the two operators

is weak (Fig. S4): the quality of the FlowCam images often precludes a confident optical assessment of the particles (Fig.

7, Fig. S5). It is worth noting that some tephra shards are positively validated even in those samples for which no tephra was390

previously found using optical microscopy. This is possibly related to the fact that the network detection accuracy does not vary

with concentration, whereas the human eye is probably more trained to recognize particles if their number exceeds a certain

threshold. Further analyses would be needed to quantitatively support this hypothesis. However, according to both analysts,

the tephra modeled predictions include a number of minerals such as feldspar and quartz, and a few contamination particles.

Minerals, closely resembling tephra grains, are routinely found during manual microscopy assessments but can be confidently395

recognized using cross-polarized light (Lowe, 2011), which allows the analyst to easily distinguish isotropic non-crystalline

tephra from anisotropic minerals. In our current setup this key function is not available, but a circular polarizer should be

implemented on the FlowCam for future studies and will be key to differentiate tephra from minerals.

The source of minerals inside the FlowCam-measured samples can be twofold: they can derive from active dust sources

proximal to the core site such as ice-free Iceland or Greenland (Simonsen et al., 2018), or be introduced artificially onto the400

core surface during the laboratory handling procedure, similar to the source of the contamination particles. At this stage, it is

not possible to further speculate on the relative importance of these two sources of minerals, and additional measurements of

replicate clean ice samples would be needed. With respect to the presence of minerals within the set of tephra predictions in

the GRIP samples, the consulted experts point out that some images of minerals are also found within the two tephra training

datasets. Hence, the tendency to classify minerals as tephra is to some extent embedded in the model. Measurements of clean405

ice are also needed to minimize the rate of tephra false positives from the contamination class (∼1%, Fig. 2). Given the large

prior of contaminations in the GRIP samples (n=89329), 900 false positives (out of the n=1671 tephra predictions) could be

misclassified as tephras. This further advocates the need of measuring clean samples in future studies.

Meltwater from the 12 samples run through the FlowCam was subsequently collected and then mounted in epoxy for tephra

identification using optical microscopy, using methodology outlined in section 3.3.1. This was required to verify that replicate410

samples were consistent to those of Cook et al. (2022). Despite some potential sample loss through the syringe pump, we found

that samples were consistent, and tephra grains, consistent with either basaltic or rhyolitc grains were present in 7 samples and

absent in 5 others.

3.3.4 Investigating the network dynamics

To better understand the network dynamics and how the images are classified into the different classes, we probe the output of415

the last FC layer of the convolutional branch of the architecture (Fig. 1). At this network depth, each original 128x128 image

becomes compressed into a 64-dimensional vector representation. We inspect such a 64d space using UMAP, an unsupervised

manifold learning and dimension reduction algorithm (McInnes et al., 2018). We first inject the trained network with a random

dataset of 500 items/class from the validation dataset, for a total of 3500 items. We extract the 64d representations and let

UMAP learn a 2D embedding space of the data (Fig. 8). In such representation the embedded data appear clustered according420

to their respective classes, with few items mispositioned (basaltic, felsic tephra and contamination/blurry), and with some
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Figure 8. UMAP 2D visualization of the network 64d layer of the CNN branch. On the left umap is run on the validation dataset. On the

right the learnt UMAP space is used to project all images of the n=12 GRIP samples. The items are color coded according to their predicted

class. Gray items represent the validation items.

degree of overlap between the two Quercus classes that evidences the higher difficulty of the network to distinguish these

types of pollen. Overall the high degree of separation between the training items is well reflected in the confusion matrix

(Fig. 2). The parametric UMAP model generated using the training data is then applied to the combined dataset of n=12

GRIP samples comprising all 3,085,063 images. The images are injected into the network, and the 64d vectors are extracted425

and reprojected onto the learnt UMAP space (Fig. 8). Overall, the GRIP items are projected on top of the training clusters,

with the exception of a secondary smaller cluster of Tephra B. found encompassed within the Contamination and Tephra F.

clusters which evidences that some Tephra B. images incorporate some features that are common to all three classes. The

Quercus predictions are located at the intersection of the two respective training clusters. Some C. avellana predictions are

found scattered outside its training cluster, thus not fully representing the features of the training images. Figure S5 shows the430

same plot with the dots replaced by images. Such a representation also allows us to inspect a number of features. For example,

different light conditions characterize images located in different areas within the dust cluster (both the validation and GRIP

data). The light from the camera flash can be occasionally redirected to the camera shutter if the dust particle is oriented in

such a way that the light becomes significantly backscattered. In such a condition the dust particles becomes white on a darker

background. Different colors are also found within the training Tephra B. cluster, mostly consisting of dark particles and fewer435

brighter particles located at the margins on the cluster. The Tephra B. GRIP cluster contains a higher proportion of bright

particles compared to its training counterpart. Bright tephra classifications are more frequently predicted as Tephra F., although

a secondary cluster of bright Tephra B. images is found positioned at the interface between the Tephra F. and contamination

clusters. The contamination cluster contains a number of particles that have been introduced during handling operations, such

as long and rod looking particles likely from glove fabrics. Blurry images are also present in this class (as the model was440

trained to do so) and they may or may not be legitimate ice core particles. Particles classified as pollen in the GRIP samples

are blurrier than those in the training sets. However, they generally show round shapes and significant size ≥10 µm. These two
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features are consistent with the pollen training images, probably leading to such classification outcome. Similar to tephra, the

investigation of pollen particles should be carried out on clean samples to avoid the presence of contamination particles being

falsely classified as pollen.445

4 Conclusions and perspectives

15.3 m

A

8.2 m

B

7.4 m

C

9.7 m

D

13.5 m

E

16.4 m

F

12.4 m

G

8.7 m

H

Figure 9. Diatoms identified in the Quelccaya ice core from the acquired FlowCam images. Particle D can be a Centrales diatom (possibly

Cyclotella genus) or an algae. Particle F can possibly be a fungus. All other particles are Pennales diatoms. The particle diameters (ABD) are

indicated in the bottom left corners. The presence of diatoms in this ice record has been previously reported using SEM microscopy by Fritz

et al. (2015). A promising future application will be to naturally extend the model by incorporating additional training classes, including

diatoms. At this stage this has not been possible.

We developed a framework for the detection, autonomous classification and quantification of climate-relevant insoluble

particles in ice core samples that can provide support and complement human-operated optical microscopy. Our approach is

fully reproducible, non-destructive and does not require any sample preparation, thus saving time and material. It couples Flow

Imaging Microscopy to a deep neural network for image classification. The network is trained on 7 classes of particles: mineral450

dust, volcanic ash or tephra (basaltic and felsic), three species of pollen grains (C. avellana, Q. robur and Q. suber) and a class

consisting of Contamination/Blurry particles. The architecture, comprising a convolutional and a fully connected network,

achieves 96.8% accuracy on the test set. Training 40 epochs requires ∼30 min on a GeForce RTX 3090. The model operates

at ∼300,000 img/s at test time and allows online deployment. Some key advantages, disadvantages and suggested upgrades to

the system developed in this work are outlined in Table 6.455

The system was investigated as a dust detector. The FlowCam can reconstruct the size distribution of Standard Reference

Material fine-grained (<10 µm) dust particles within 1σ of the certified values. The mass concentrations can be replicated within

1% over a range from few ppb to 10 ppm, with an average precision of 19%. The Limit of Detection for dust ranges from 6

ppb to 11 ppb. The comparison of mass concentrations with the Coulter Counter reveals a good agreement (ratio=0.86±0.16)

only for particles smaller than ∼10 µm. The FlowCam exhibits a drop in efficiency in detecting larger particles that can lead to460

an underestimated mass concentration of up to a factor 3. This drawback affects all types of particles and should be carefully
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considered. In the presented setup, the FlowCam offers a valid alternative to the Coulter Counter and to the Abakus as a dust

detector for polar ice cores, with the advantage of being sensitive to the particle type.

We tested the classification of freshly-collected pollen grains and found - perhaps unsurprisingly - that the representativeness

of the training datasets is of exceptional importance. If the model is trained using the most general pollen datasets, Corylus465

avellana can be classified at ∼98% accuracy, while Quercus robur and Quercus suber can be classified at ∼90% accuracy.

We applied the model to 12 GI-1 and GS-2 Greenland ice core samples, containing known tephra deposits, for a total of 3+

million images. Almost the entirety of the images is classified as either dust or Contamination/Blurry particles, the latter from

the external core surface. 1671 particles are classified as tephra (either felsic or basaltic). Inspection of such images by two

tephra experts suggests that only up to ∼50% are possible tephra, the remaining ∼50% consisting of either Contaminations470

or minerals such as quartz and feldspar. At this stage, our framework can support tephra analyses by providing first-order

information on the occurrence of volcanic layers, but we could not quantitatively replicate the tephra concentrations obtained

by optical microscopy in Cook et al. (2022).

Building on this work, we envision promising avenues for further research and upgrades in two main fields: data and hard-

ware.475

• The existing training datasets should be extended by including other relevant particles that may be found in ice core

records (e.g. diatom frustules, Fig. 9, or Betula pollen). The noise baseline introduced by contamination/blurry particles

should be better established by measuring clean samples. Meaningful integrations between the data that result from our

method and from human-operated optical microscopy should be outlined.

• Improvements of the hardware should target both the quality of the imagery (by using the more resolved color camera480

featured by the FlowCam 8100 model) and the statistics (by installing a higher volume cell alongside a faster shutter

rate camera). Importantly, a polarizer would be key to separate tephra from anisotropic minerals. An improved system

should be ideally tested and deployed within a CFA workflow, targeting continuous particle records from ice cores.

Code and data availability. The training and GRIP datasets will be deposited on Zenodo. The code will be made publicly available at

https://github.com/nmaffe/icelearning485
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Table 3. Pollen experiment results. The accuracies are indicated as the average of N replicates (C. avellana: N=5, Q. robur: N=3, Q. suber:

N=10). In brackets the standard deviation of the replicates.

Model training dataset
Model inference on a pure C. avellana B sample

Ncor/Npollen (1σ) Nrob/Npollen (1σ) Nsub/Npollen (1σ)

C. avellana A (N=7824)

0.48 (0.03) 0.07 (0.01) 0.45 (0.03)Q. robur A+B (N=35276)

Q. suber A+B (N=31745)

C. avellana B (N=13713)

0.961 (0.007) 0.005 (0.004) 0.034 (0.003)Q. robur A+B (N=35276)

Q. suber A+B (N=31745)

C. avellana Mix (N=25186)

0.970 (0.007) 0.006 (0.001) 0.023 (0.006)Q. robur A+B (N=35276)

Q. suber A+B (N=31745)

C. avellana A+B+Mix (N=47723)

0.984 (0.004) 0.005 (0.002) 0.012 (0.003)Q. robur A+B (N=35276)

Q. suber A+B (N=31745)

Model training dataset Model inference on a pure Q. robur B sample

C. avellana A+B+Mix (N=47723)

0.11 (0.01) 0.023 (0.005) 0.87 (0.01)Q. robur A (N=10239)

Q. suber A+B (N=31745)

C. avellana A+B+Mix (N=47723)

0.038 (0.007) 0.910 (0.01) 0.051 (0.003)Q. robur B (N=24537)

Q. suber A+B (N=31745)

C. avellana A+B+Mix (N=47723)

0.036 (0.007) 0.914 (0.009) 0.050 (0.005)Q. robur A+B (N=35276)

Q. suber A+B (N=31745)

Model training dataset Model inference on a pure Q. suber B sample

C. avellana A+B+Mix (N=47723)

0.47 (0.10) 0.49 (0.09) 0.038 (0.008)Q. robur A+B (N=35276)

Q. suber A (N=10663)

C. avellana A+B+Mix (N=47723)

0.07 (0.03) 0.03 (0.01) 0.90 (0.03)Q. robur A+B (N=35276)

Q. suber B (N=20582)

C. avellana A+B+Mix (N=47723)

0.07 (0.03) 0.03 (0.01) 0.90 (0.03)Q. robur A+B (N=35276)

Q. suber A+B (N=31745)
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Table 4. GRIP sample details and tephra counts by manual optical microscopy. The sample ages are derived from the GICC05 chronology.

* Sample that corresponds to the specified age. ** The uncertainties are estimated.

GRIP sample (age) Sample depth interval (cm) Depth (m) Microscopy ice meltwater (mL) Microscopy tephra counts (±1σ)** Microscopy tephra concentrations (#/mL)

3046 (GI-1b, 13186 yr b2k)

0-20 1674.75 - 1674.95 33 0 0

20-40* 1674.95 - 1675.15 36 1062±50 30±1

40-55 1675.15 - 1675.3 33 16±1 0.48±0.03

3136 (GI-1e, 14191 yr b2k)

0-20* 1724.25 - 1724.45 45 5000±3000 111±67

20-40 1724.45 - 1724.65 38 57±5 1.5±0.1

40-55 1724.65 - 1724.8 28 0 0

3303 (GS-2.1a, 17238 yr b2k)

0-20* 1816.1 - 1816.3 34 18±1 0.53±0.03

20-40 1816.3 - 1816.5 33 0 0

40-55 1816.5 - 1816.65 28 365±20 13.0±0.7

3306 (GS-2.1a, 17326 yr b2k)

0-20 1817.75 - 1817.95 33 0 0

20-40 1817.95 - 1818.15 34 0 0

40-55* 1818.15 - 1818.3 23 431±100 19±4
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Table 6. Advantages, disadvantages and suggested upgrades to the system presented in this work.

Particle class Advantages Disadvantages Suggested upgrades

Polar dust (<10 µm) CFA ready. Accurate mass concentration

reconstruction.

Detection Limit close to Antarctic

interglacial values.

Deployment in a clean

room.

Alpine dust Accurate mass concentration

reconstruction for dust <10 µm.

Underestimation of the >10 µm fraction. Higher volume cell.

Tephra (volcanic glass) Can support human-operated bench

microscopy. Autonomous, no sample

preprocessing, CFA ready.

Limited to fraction >8 µm.

Underestimation of particles >10 µm.

Low statistics. Image quality.

Higher volume cell.

Polarizer.

Pollen Can support human-operated bench

microscopy. Autonomous, no sample

preprocessing, CFA ready.

Underestimation of particles >10 µm.

Low statistics. Image quality.

Required training datasets

tailored to the ice core site.

Higher volume cell.

New particles (e.g.

diatoms)

Autonomous, no sample preprocessing.

Easy to implement by adding training

datasets.

Underestimation of particles >10 µm.

Low statistics.

Requires specific training

datasets. Higher volume

cell.
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Appendix A: Segmentation of particle images and outflow recovery
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Figure A1. Left: experimental setup. Right: Segmentation of particle images. A calibration image of the camera view is obtained prior to the

analysis when no sample is pumped into the system (top left). During the analysis each frame (top right) is compared to the calibration image

and a pixel-by-pixel difference is calculated (bottom right) and thresholded to extract the single particle images. This procedure is performed

by the FlowCam software.

The instrument is equipped with a syringe pump (in our case with a 1.0 mL volume), placed downstream of the flow

cell. The syringe pump draws sample fluid until its volume is filled, and then discharges it through an outlet tubing. In such a

configuration, the sample outflow can be collected via the outflow tubing while the pump is being discharged. Such a collection,

however, would integrate 1.0 mL of sample volume, which is not ideal if a fraction of the sample is needed. Additionally, there490

is no instrument continuous outflow while the 1.0 mL pump volume is being filled, which is not compatible with Continuous

Flow Analysis setups.

We therefore suggest to replace the default syringe pump with a peristaltic pump, which ensures i) a continuous flow, ii)

full control of the sample outflow collection via, for e.g., a valve switch connected to the outflow tubing. If used within a CFA

setup, the instrument inflow would simply require to replace the default discrete-mode pipette tip with a tubing connecting the495

instrument placed upstream with the FlowCam flow cell inlet.
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Appendix B: Metadata

Feature Explanation

1. Area Number of pixels in the thresholded (binary) greyscale image converted to a measure of area by use

of the calibration factor. (real > 0)

2. Area (Filled) The area represented by the particle edge and all the pixels inside the edge. (real >0) In the case of an

opaque particle Area (Filled) = Area. However, if parts of the particle are transparent, and therefore

do not threshold as “particle”, then Area (Filled) > Area.

3. Aspect Ratio The ratio of the lengths of the axes of the Legendre ellipse of inertia of the particle. The Legendre

ellipse of inertia is an ellipse with its center at the particle’s centroid, and with the same geometrical

moments, up to second order, as the original particle area. A circle has the value 1.0 as does a square.

Values near zero are for particles that are long and thin. (real [0, 1])

4. Biovolume (Cylinder) Biovolume (Cylinder) = (π/4) * Geodesic Thickness2 * Geodesic Length

5. Biovolume (P.

Spheroid)

Biovolume (Spheroid) = (π/6) * Legendre Minor2 * Legendre Major

6. Circle Fit Deviation of the particle edge from a best-fit circle, normalized to the range [0,1] where a perfect fit

has a value of 1. (real [0, 1]; 1 is the value for a perfect circle; values near zero are for particles that

are not at all circular)

7. Circularity A shape parameter computed from the perimeter and the (filled) area. A circle has a value of 1.0.

Circularity is the inverse of Compactness. Formula: (4 x π x Area) / Perimeter2. (real [0,1]) = Pixel

Grid = Perimeter = Best-Fit Circle = Area (Filled)

8. Circularity (Hu) An alternative measure of circularity that often provides a better indication of the circular shape of a

particle than does Circularity, especially if the particle is very small or its edge has defects. A circle

has a value of 1.0. (real [0, 1]). Ref: Žunić et al. (2010).

9. Compactness A shape parameter derived from the perimeter and the (filled) area. The more convoluted the shape,

the greater the value. A circle has a value of 1.0. Compactness is the inverse of Circularity. Formula:

Perimeter2 / (4π * Area). (real ≥ 1)

10. Convex Perimeter An approximation of the perimeter of the convex hull of a particle. Derived from feret measurements.

11. Convexity A shape parameter that is computed as the ratio of filled area to the area of the convex hull of the

particle. This property is sometimes called Solidity. A circle has a value of 1.0. (real [0, 1]) (A simple

way of thinking of the convex hull is to imagine taking a rubber band and stretching it around the

filled area)

12. Diameter (ABD,

Area Based Diameter)

The diameter based on a circle with an area that is equal to the Area (Feature #1). (real > 0)
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13. Diameter (ESD,

Equivalent Spherical

Diameter)

The mean value of 36 Feret measurements. (real > 0)

14. Edge Gradient Average intensity of the pixels making up the outside border of a particle after a Sobel Edge Detect

convolution filter has been applied to the raw camera image. (real [0, 255])

15. Elongation The inverse of Geodesic Aspect Ratio. (real ≥ 1; 1 is the value for a circle or square; larger values are

for elongated particles)

16. Feret Angle Max Angle of the largest Feret measurement. (real [-90, +90])

17. Feret Angle Min Angle of the smallest Feret measurement. (real [-90, +90])

18. Fiber Curl A shape parameter computed from Geodesic Length and Length. Also known as Curl Index. Formula:

(Geodesic Length / Length) – 1. (real ≥ 0)

19. Fiber Straightness A shape parameter computed from Geodesic Length and Length. Formula: Length / Geodesic Length.

(real ≥ 0)

20. Geodesic Aspect Ra-

tio

The ratio of Geodesic Thickness to Geodesic Length. Elongation is the inverse of this ratio. (real [0,

1])

21. Geodesic Length Values obtained by modeling the particle as a rectangle and computing length and thickness by solving

the equations: Area = Geodesic Length x Geodesic Thickness Perimeter = 2 x (Geodesic Length +

Geodesic Thickness) where Area is filled area and Perimeter is the length of the particle edge not

including the lengths of edges of holes in the particle. (real > 0)

22. Geodesic Thickness See Geodesic Length

23. Intensity The average grayscale value of the pixels making up a particle (grayscale sum / number of pixels

making up the particle). (real [0, 255]; 255 is most intense)

24. Length The maximum value of 36 feret measurements. (real > 0)

25. Particles Per Chain The number of particles that were grouped into one particle based on the nearest neighbor distance.

(integer > 1; almost always 1 if nearest neighbor distance is 0)

26. Perimeter The length of the particle edge not including the lengths of edges of holes in the particle. (real > 0)

27. Roughness A measure of the unevenness or irregularity of a particle’s surface-the ratio of perimeter to convex

perimeter. (real ≥ 1; 1 is the value for a filled shape with convex perimeter; larger values are for

particles that have interior holes and/or a non-convex perimeter)

28. Sigma Intensity Standard deviation of grayscale values. (real ≥ 0)

29. Sum Intensity Sum of grayscale pixel values. (real > 0)

30. Symmetry A measure of the symmetry of the particle about its center. If a particle is symmetric about the center

then the value of Symmetry is 1.0. Typically used to locate ‘broken’ or partial particles. (real [0, 1])
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31. Transparency 1 – (ABD Diameter / ESD Diameter). (real [0, 1]; 0 is the value for a filled circle; values near 1 are

for an elongated or irregular shape or a shape that has many interior holes)

32. Volume (ABD) Sphere volume calculated from ABD Diameter. (real > 0)

33. Volume (ESD) Sphere volume calculated from ESD Diameter. (real > 0)

34. Width The minimum value of 36 feret measurements. (real > 0)
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Appendix C: Training dataset images

Random batches of n=100 training images of each class. The images have been reshaped for better visualization. The particle

diameters (ABD) are indicated in the bottom left corners. Zoom in for best view.500
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Figure C1. Dust.
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Figure C2. Felsic tephra.
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Figure C3. Basaltic tephra.
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Figure C4. Corylus avellana pollen.
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Figure C5. Quercus robur pollen.
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Figure C6. Quercus suber pollen.
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Figure C7. Contamination/Blurry particles.
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