Reply to Referee #1

We thank you Referee#1 for her/his constructive comments on our manuscript. Please find
below our replies in blue.

This manuscript provides a novel and necessary technique to improve the finding and
targeting of tephra layers (and other particle types) in ice core samples. The authors did a
rigorous analysis by imaging synthetic and natural particles and used machine learning to
identify the different particle groups. The size of the particles that they can image is greater
than most other grain size analysis techniques being used today in ice core research. Marine
particles (diatoms and sponge spicules) are a little underrepresented but can sometimes be
larger than the tubbing diameter (80 microns). Complex rock fragments (i.e. lava flows) are
also not really identified in this study. Many particulate layers in Antarctica are wind-blow
rock fragments and would have a distinctive shape when compared to mineral fragments
and glass shards. This along with adding more types of pollen to their image dataset could
be an area for future improvement.

We agree with the Referee - the training datasets can be certainly extended as a future
improvement, with additional classes. In this work, among volcanic material, we have
targeted only glass shards. We point out that the 80 um flow cell is not necessarily a hard
constraint. A bigger flow cell can be installed, but the trade-off is that typically in the standard
FlowCam configuration the magnification would be lower (e.g. 10X). This would unlock the
possibility to detect bigger particles but the resulting images would be smaller.

There are a number of comments in the attached pdf that need some clarification or
elaboration. Many of my comments deal with the FlowCam setup. It would be really helpful if
there was a picture or diagram of the FlowCam setup, even if in the appendix. | was
confused by the orientation of the tubbing and the gravitational settling of larger particles. A
cross-section diagram of the tube would help explain the imaging volume (41.8%) and the
problem with large and blurry particles.

The imaged volume % is solely explained by the combination of pump rate, camera shutter
rate and flow cell/optics geometry. The flow cell is placed in a vertical orientation, with the
sample flowing in the same direction as gravity. The imaged volume % (41.8%) is
automatically calculated by the FlowCam software based on the settings above. We have
now added a picture in Appendix A to clarify the experimental setup.

Being able to image particles assess their grain size and give them a particle type (e.g.
tephra, dust, etc.) before a tephra specialist gets the samples is extremely helpful and will
improve the number of tephra found in ice cores and will decrease the time needed to find
said tephra. However, the authors do not discuss how to physically capture the particles after
FlowCam analysis. Capturing these particles so that they can be analyzed by SEM or EMPA
is the most important part of this type of work. It is great to know the particle type and
grain-size distribution but this method falls short if geochemistry on the particles is not
obtained. It would be great if the authors would elaborate on capturing these particles. Their
goal is to help both the CFA and the tephra communities. The CFA community doesn't like to
run particles through their MS and the tephra community wants those particles. This method
can be extremely helpful in spotting these interesting intervals.



We have now added our recommendations on how to collect the instrument outflow in
Appendix A.

Overall this is an excellent paper that addresses a need in the ice core community. With
some minor corrections and a few elaborations, this manuscript is ready to publish. | hope to
see this type of FlowCam analysis being used in more labs and on more cores.

Thanks - we hope this work will be beneficial to various communities.

Please also note the supplement to this comment:
https://tc.copernicus.org/preprints/tc-2022-148/tc-2022-148-RC1-supplement.pdf

Please find our replies to your detailed comments in the pdf attached to this file, with the
exception of the following one which is reported here given its importance:

L443-444: Limit of detection can be two things. Is this the lowest limit of detection or the
maximum limit of detection? What is the maximum number of particles you can image? This
would be important for a thick tephra deposit. Or what are the fewest particles you can see.
This is important for cryptotephra where 10's of particles may be present.

We refer to LOD as the lowest concentration of an analyte in a sample that can be detected
[1]. We calculated it for dust since we could perform a controlled experiment for this particle
type by changing the dust standard concentrations.

For other particles such controlled conditions could not allow a LOD assessment - however,
the following back-on-the-envelope calculation offers some insights for tephra:

If considering all concentration and dilution steps, we calculate that we concentrated the
analyzed GRIP tephra samples by 20-50 times. With the level of tephra concentration of
these samples, reported in the 1-100 shards/mL range from optical microscopy assessments
(Table 4), our model detects tephra shards in the number of few tens to few hundreds, with
roughly 0.3 mL of sample analyzed (Table 5). To get the same statistics without any
concentration step, the amount of sample to be analyzed should be increased to 6-15 mL,
clearly not compatible with continuous/online flow analysis requirements. Of course, such
volumes/statistics can change according to the original concentration of tephra shards in the
samples. At the moment the 42% image volume is the biggest challenge for the detection of
low concentration particles. To our knowledge the newer FlowCam models feature a higher
volume capacity (with the same 20X magnification).

On the other hand, we don’t see major obstacles for the system to detect ‘too many’
particles, other than the flow cell becoming clogged. Such a ‘clogging threshold’, however,
has not been established within this work.

[1] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by
A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997).



10

https://doi.org/10.5194/tc-2022-148
Preprint. Discussion started: 26 August 2022 The Cryosphere
(© Author(s) 2022. CC BY 4.0 License. Discussions

Detection of ice core particles via deep neural networks

Niccold Maffezzoli!?, Eliza Cook?, Willem G.M. van der Bilt*’, Eivind N. Stgren*, Daniela Festi®,
Florian Muthreich®’, Alistair W. R. Seddon®’, Francois Burgay®, Giovanni Baccolo®!°, Amalie R.
F. Mygind'!, Troels Petersen'!, Andrea Spolaor?, Sebastiano Vascon', Marcello Pelillo',

Patrizia Ferretti', Rafael S. dos Reis'?, Jefferson C. Simdes'>'?, Yuval Ronen*, Barbara Delmonte®,
Marco Viccaro', Jgrgen Peder Steffensen?, Dorthe Dahl-Jensen?, Kerim H. Nisancioglu*>, and
Carlo Barbante!?

ICa’ Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172
Venice, Italy

2Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30172 Venice, Italy

3Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, 2200, Copenhagen, Denmark
“Department of Earth Science, University of Bergen, Allégaten 41, 5020 Bergen, Norway

5Bjerknes Centre for Climate Research, Jahnebakken 5, 5020 Bergen, Norway

SInstitute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
"Department of Biological Sciences, University of Bergen, Thormghlensgate 53A, 5006 Bergen, Norway

8Paul Scherrer Institut, Laboratory of Environmental Chemistry (LUC), Forschungsstrasse 111, 5232 Villigen PSI,
Switzerland

9Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126 Milan, Italy
10Milano-Bicocca Section, Istituto Nazionale di Fisica Nucleare INFN, Milan, Italy

Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark

12Centro Polar e Clim4tico, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil

B(Climate Change Institute, University of Maine, Orono, ME 04469, USA

4Universita degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, 95129 Catania, Italy

Correspondence: Niccoldo Maffezzoli (niccolo.maffezzoli @unive.it)

Abstract. Insoluble particles in ice cores record signatures of past climate parameters like vegetation, volcanic activity or
'ty. Their analytical detection depends on intensive bench microscopy investigation and requires dedicated sample prepa-
n steps. Both are laborious, require in-depth knowledge and often restrict sampling strategies. To help overcome these
limitations, we present a framework based on Flow Imaging Microscopy coupled to a deep neural network for autonomous
image classification of ice core particles. We train the network to classify 7 commonly found classes: mineral dust, felsic and
basaltic volcanic ash (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber) and contamination
particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8%
classification accuracy at test time. We present the system’s potentials and limitations with respect to the detection of mineral
dust, pollen grains and tephra shards, using both controlled materials and real ice core samples. The methodology requires
little sample material, is non destructive, fully reproducible and does not require any sample preparation step. The presented
framework can bolster research in the field, by cutting down processing time, supporting human-operated microscopy and
further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core

particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented.


Reviewer
Not every ice core tephra group relies on bench top microscopy. ECM and Sulfate are used to target eruption intervals, as well as down hole optical borehole logging. 
For example-  http://www.researchgate.net/publication/256538503_South_Pole_Glacial_Climate_Reconstruction_from_Multi-Borehole_Laser_Particulate_Stratigraphy

Niccolo MAFFEZZOLI
Rephrased to: 

"For some of them, the analytical detection rely on intensive bench microscopy investigation and .."
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1 Introduction

Ice cores provide some of the most valuable continuous records of the Earth’s past climate. While the oldest Antarctic and
Greenland cores date back respectively 800,000 and 125,000 years ago and register variability of climate parameters at hemi-
spheric scales (North Greenland Ice Core Project members, 2004; EPICA community members, 2004), ice stored in glaciers
and small ice caps located at lower latitudes typically contain fingerprints of local to regional climate changes on centennial
to millennial timescales (Schwikowski, 2004). The analytical detection of impurities contained in the ice matrix allows to pro-
duce records of past climate at various spatial and time scales. Alongside gas bubbles and soluble chemical compounds, the
ice matrix stores insoluble particulate matter, hereafter referred to as “particles’. Among the types of particles is mineral dust,
volcanic ash, pollen grains and other biological matter, as well as fossils sourced from the ocean or lakes such as diatoms and
foraminifera. Each particle type carries its own climate significance and its concentration depends on factors such as the source
strength and emission mechanisms, the relative distance between core site and source region, as well as parameters controlling
atmospheric transport and deposition.

By far the most abundant particle type in ice, are mineral dust particles, that are sourced from continental surfaces and
transported and dry or wet deposited onto ice sheets and glaciers (Legrand and Mayewski, 1997). The detection of dust is
fundamental to investigate the extent of arid areas in the past, the paleo-atmospheric circulation and to assess the role of
mineral dust aerosol in Quaternary climate changes (Petit et al., 1999; Lambert et al., 2008). Thanks to its preservation, dust
records can be used to synchronize deep ice cores in the absence of other proxies, thus supporting ice core dating (e.g. Bohleber
et al., 2018; Eichler et al., 2000; Dome Fuji Ice Core Project Members, 2017). Dust measurements are routinely carried out
in E'inuous while melting ice cores in Continuous Flow Analysis setups (CFA, Bigler et al., 2011) using optical systems
such as the laser-based Klotz Abakus sensor. As the abundance of dust particles is orders of magnitude higher than other
insoluble particles, Abakus measurements are commonly associated with dust, despite the instrument being actually insensitive
to the type of particle entering the detector. Additionally, Abakus values require an accurate calibration with an independent
technique, typically the Coulter Counter (CC), an electrical-based analyzer that operates in discrete mode and can’t be run on
CFA setups (Petit et al., 1981). The mismatch and calibration between the Abakus and the CC impurity detection is an active
research topic within the ice core community (Simonsen et al., 2018). The higher accuracy of the CC comes at the expense of
its discrete mode of use; moreover it is also particle insensitive.

Volcanic ash deposits are also found in ice cores and can contain nic minerals, rock fragments as well as volcanic glass
E- s. Referred to as ‘cryptotephras’, these invisible and low concentrations layers of glass shards can form stratigraphically
ct deposits in ice cores, as well as in marine and terrestrial sediments (e.g. Lowe and Hunt, 2001; Turney et al., 1997).
The identification of volcanic glass (hereafter referred to as tephra) provides direct evidence of past volcanic activity (Abbott
and Davies, 2012; Sigl et al., 2015) and provides a crucial tool to date and synchronize paleorecords (ice, marine and lake)
and therefore to establish absolute and synchronized chronologies (Lowe, 2011). The analytical detection of tephra layers in
ice cores is typically carried out in a two-stage routine. First, potential volcanic layers are identified by spikes of electrical

conductivity or sulfate concentrations during CFA analyses (e.g. Wolff et al., 1995). Afterwards, manual discrete sub-sampling


Reviewer
Not all tephra layers in ice cores are cryptotephra. Some are very visible.  For example the tephra layers in Iverson et al., 2017 are a few cm thick. 

Niccolo MAFFEZZOLI
Reworded as:

"Across the spectrum of volcanic material, in this work we target 'cryptotephras’, glass shards that can form stratigraphically distinct deposits in ice cores, as well as in marine and terrestrial sediments, that are invisible to the naked eye"

Reviewer
This is either the wrong word are another word is missing.

Niccolo MAFFEZZOLI
Thanks. "in continuous" is now removed.

Reviewer
Reworked volcanic material (rock and mineral fragments) is common in ice cores in Antarctica and would not be considered a tephra. But this does show that tephra can be complicated deposits. 

Niccolo MAFFEZZOLI
Thanks. Within the tephra material spectrum, in this work we target only  glass shards. Reworded as:

"Across the spectrum of volcanic material, in this work we target ’cryptotephras’, glass shards from individual eruptions that can form stratigraphically distinct deposits in ice cores, as well as in marine and terrestrial sediments, that are invisible to the naked eye"
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of such selected horizons is carried out from a dedicated ice core section and the ice samples are individually processed and
manually inspected using optical bench microscopy (e.g. Cook et al., 2018A). If the presence of tephra is confirmed, the
grains are individually counted. Not all tephra layers however correspond to acidity or sulfate peaks and vice versa, given the
different emission, transport and deposition of gaseous species and particulate volcanic material (Legrand and Mayewski, 1997;
Davies et al., 2010). This makes the identification of tephra extremely time consuming and in some cases serendipitous. While
attempts have been made to automate particle detection (e.g. Van der Bilt et al., 2021, in sediment records), the methodology
for investigating tephra in ice cores typically requires a huge time commitment by tephra experts that leads to the identification
55 of few major eruptions (Svensson et al., 2008; Lin et al., 2022).

Pollen analyses from snow and ice records provide information on past vegetation and atmospheric circulation changes
(Bourgeois, 2000). Over relatively short timescales, pollen records with springtime maxima associated with vegetation blooms
can also be used as a dating method (Nakazawa et al., 2004; Festi et al., 2021). Like tephra, pollen analyses need several and
laborious preprocessing steps in which discrete ice samples are cut, melted, and pre-concentrated (e.g. Festi et al., 2015, and

60 references therein). Finally, the presence and the number of pollen grains is manually evaluated by palynologists via optical
bench microscopy. In summary, extraction and detection of climate-relevant ice core particles is extremely laborious.

In this work we investigate the extent to which autonomous and simultaneous detection and classification of ice core particles
can be achieved with deep Neural Networks. Over the last ten years Neural Networks and in particular Convolutional Neural
Networks (CNN) have become the state-of-the-art methods in digital image classification tasks. Since the proposed architecture

65 of Krizhevsky et al. (2012), the field experienced rapid growth that spawned major breakthrough and optimization of a number
of aspects including increasing model depth (Simonyan and Zisserman, 2014), understanding the dynamics of internal layers
(Zeiler and Fergus, 2014) and facilitating the gradient flow (He et al., 2016). In the ImageNet classification challenge (Deng

E etal., 2009), CNN-based architectures have surpassed human accuracy (He et al., 2015). In our setup, to generate the ice particle
imagery, we rely on a flow imaging microscopy instrument (the FlowCam), able to produce images of particles captured within

70 aliquid stream continuously pumped through the instrument. We develop a mixed Convolutional and Fully Connected neural
network to classify the imagery into 6 classes of particles: mineral dust, tephra (basaltic and felsic), and three pollen grains
potentially present in alpine ice records: Corylus avellana, Quercus robur and Quercus suber. An additional 7-th class of
Contamination/Blurry particles is included as a control channel for the model to be able to identify those particles that do not

provide climate information.

75 2 Methods
2.1 FlowCam settings and optimization

FlowCam instrument (Yokogawa Fluid Imaging Technologies, VS-I-B-model) located at the Earth Surface Sediment Lab-
oratory (EARTHLAB, University of Bergen, Norway) is used to capture images of particles in ultrapure water or ice meltwater
samples. The FlowCam is a benchtop flow imaging cytometer equipped with a visible range optical camera. The liquid sample

80 isinjected into the system by manual pipetting and it is drawn by a syringe pump to a quartz flow cell. Alternatively, a connec-


Reviewer
This type of deposit would more likely be a cryptotephra

Niccolo MAFFEZZOLI
We use cryptotephra and glass shards here instead of tephra, although as outlined in L43 the term 'tephra' will be used hereafter.

Reviewer
It would be nice to have a figure showing the camera setup. Or even a diagram showing the camera and the imaging volume. Is this a top down measurement and thus the large particles that are settling falling out of focus. Or is this a setup from the side and you are losing focus area because of the side walls? 

Niccolo MAFFEZZOLI
We have now added a figure in the Appendix showing the flow cell.

Reviewer
Imaging the particles is very important. But do you have a mechanism to filter the particles and capture them for tephra analysis? Imaging is great but you would get more out of it by doing geochemical analysis on the glass shards .

Niccolo MAFFEZZOLI
We have now added some text in the Appendix on the sample recovery.

Please also note that we have now also investigated the sample recovered by optical microscopy, and added some text at the end of Sect. 3.3.3:

"Meltwater from the 12 samples run through the FlowCam was subsequently collected and then mounted in epoxy for tephra identification using optical microscopy, using methodology outlined in section 3.3.1. This was required to verify that replicate samples were consistent to those of Cook et al (2022). Despite some potential sample loss through the syringe pump, we found that samples were consistent, and tephra grains, consistent with either basaltic or rhyolitc grains were present in 7 samples and absent in 5 others."
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tion tubing can allow sampling from discrete sample vials or from a continuous flow system. The flow cell used in our setup

(depth=80 pum; width=570 um) allows the flow of particles of up to 80 um in diameter in the maximum dimension. A 1.0 mL

volume syringe pump is set to operate at a flow rate of 0.02 mL/min. While passing through the flow cell the sample is imaged

by a camera equipped with a 20x magnification objective. The camera flash duration is set to 65 us and is operated at the

maximum 22 frames per seconds. With the aforementioned settings the imaged sample volume, i.e. the percentage of volume

imaged by the camera, is 41.8 %. This parameter is determined by the combination of camera frame rate, pump speed and flow

cell geometry. The system optics determines a calibration factor of 0.2752 pm/pixel in the resulting monochrome 1280x960
pixels 8-bit TIFF images.

The mechanics of particle image creation is performed by the native FlowCam software (VisualSpreadsheet v3.4). All image

90 frames captured during analyses are compared to a calibration image acquired prior to the analysis (Fig. Al). In every image,

the pixels are considered ‘signal’ (i.e. set to 1) if their intensities are higher or lower than their intensities in the calibration

image by a threshold value. If the pixel intensity differences do not exceed the threshold, they are considered ‘background’

and set to 0. Once the signal-background binary image is created, the particles are obtained by segmenting out the pixels

flagged as signal (Fig. A1). The threshold value, set to 18, and the camera focus are optimized by acquiring images of spherical

95 polystyrene 25 um beads and by minimizing the standard deviation of the resulting size distribution (Fig. S1). For each acquired

particle image, the FlowCam software calculates a number of numerical features, hereafter also referred to as metadata, mostly

reflecting the particles’ geometrical properties and are calculated by classic computer vision algorithms. In this work we use

n=34 metadata (Appendix B).
2.2 Training dataset

100 The classification model is based on a supervised learning approach. The training dataset consists of images and related
metadata for 7 classes of particles: mineral dust, tephra (basaltic and felsic), three pollen species: Corylus avellana, Quercus
robur and Quercus suber and an additional class that consists of contamination particles that are found on the external surface
of ice cores (Table 1, Figs. C1 to C7). Each item of the training dataset consists of a particle image and the corresponding array
of 34 numerical metadata. The training dataset of each class (except for the contamination class) is created by preparing and

105 measuring samples that contain only one type of particle so that each acquisition yields a purely 1-class batch. The samples
are created by preparing solutions in ultrapure water and multiple acquisitions are repeated until several thousand images are

collected. Every image of the training dataset is visually inspected and validated by the human eye.

e The training dataset of dust particles is created by measuring water solutions of FD066 (Linsinger et al., 2019, Table 1,

Fig. C1), an aluminum oxide powder containing particles with a mean size distribution of 2.5 um and rarely exceeding

110 6 um (Table 2). Such a dust training set is therefore suited to mimic Antarctic and Greenland ice core dust, which is
typically centered on E.lm (e.g. Delmonte et al., 2002; Ruth et al., 2003).

e Two tephra classes, felsic and basaltic, are included in the training dataset, primarily because of their detectable color

differences that result from a different geochemistry. Felsic (silica-rich) tephras are typically lighter in color, while


Reviewer
I think mean background dust for West Antarctica is closer to 5 microns. Koffman et al. 2013.  She also notes that subtropical eruptions actually have a grain size smaller than the background dust. Are these methods tunable to focus on distal cryptotephra?

Niccolo MAFFEZZOLI
Reworded as:
"Such a dust training set is therefore suited to mimic dust found in inland Antarctic and Greenland ice cores, typically below 4 um".

In the current setup, classification of 2+ classes of particles within the ca. (1-5) um size range would be highly challenging to say the least, given the poor quality/blurriness at such small diameters. 

However, things may change if, for example, a polarizer is installed. This may unlock tephra classification even for small-sized particles (see Sect. 3.3 and 4 for upgrade reccomendations).

Reviewer
Is there any way to improve this? It seems like missing more than half area is problematic.  

Niccolo MAFFEZZOLI
There is a tradeoff to make here. With the instrument used in this work an increased imaged volume % comes at the expense of the magnification, which should be reduced to 10X, resulting into small particles barely visible in the output images. We decided to prioritize the quality of the images to test the methodology.

More recent FlowCam models have, to our knowledge, a higher volume capacity.
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Table 1. ing dataset.

Class Sample type Sample origin Approximate size range  # training items
1. Dust Conundrum powder (Al203) Standard Reference Material (ERM-FDO066) <10 pm 8000
2. Felsic tephra Campanian Ignimbrite Southeast Romania (43-44° N, 23-24° E) (8, 80) um 7125
3. Basaltic tephra Grimsvotn (Iceland) Kirkjubaejarklaustur, Iceland (63.78° N, 18.09° W) (8, 80) um 6271
4. Pollen C. avellana pollen Austria (47° 16” 14.31” N, 11° 22’ 29.22“ W) (10, 40) pm 47223
5. Pollen Q. robur pollen Portugal (41.476-41.155° N, 8.701-8.563° W) (10, 40) pm 35276
6. Pollen Q. suber pollen Portugal (41.155-41.151° N, 8.565-8.660° W) (10, 40) pm 31745
7. Contamination/Blurry Outer core ice samples GRIP ice core external layer (5, 80) um 11439

basaltic ash is darker. The felsic tephra training dataset consists of Campanian Ignimbrite volcanic ash from the 39.3+0.1
ka BP Phlegrean Fields eruption (Fedele et al., 2003, Table 1, Fig. C2). The phonolitic-trachytic (~60 wt.% SiO2) ash
was sampled ~1,000 km from its source (Veres et al., 2013). Our basaltic tephra consists of volcanic ash from the
Icelandic Grimsvotn 2011 eruption (Table 1, Fig. C3). Samples ash were collected on May 22, 2011 in the town of
Kirkjubzejarklaustur, about 70 km southwest of the Grimsvotn caldera. After collection, samples have been dried and
stored in plastic beakers. Ashes of both types were dry sieved at 63 pm to limit the maximum dimension and fit the
flow cell’s max. 80 um size constraint (min. ~8 pum). This range (8-80 um) is consistent with the size that is typically
considered during cryptotephra manual counting by bench microscopy (Gow and Meese, 2007; Narcisi et al., 2012;
Abbott and Davies, 2012; Plunkett et al., 2020). It is important to note that, for both tephra classes, only those tephra
images that could be clearly validated by an experienced tephra analyst were included in the training dataset. This
resulted in discarding a very large fraction of imagery. This decision was adopted to drive the model to yield

clearer tephra predictions and reduce ambiguous predictions (i.e. for tephra, purity is prioritized over efficiency).

o Three pollen species are included in the training dataset: C. avellana, Q. robur and Q. suber (Table 1, Figs. C4, C5,
C6). C. avellana branches were collected near Innsbruck (Austria) in February 2019 from multiple trees within a radius
of 500 m. The inflorescence was matured in the lab and the samples prepared by mixing together pollen from different
trees. Both Quercus species were collected in Portugal and treated similarly. Given the diameter of the pollen grains,
(Corylus: 25 pm; Quercus: 30 um) and the optics not allowing to capture the whole cell width, in a number of images
the pollen grain appears only visible for a fraction of its entirety. We decided to keep fractional pollen images above 10

pum to increase the sensitivity of the model to correctly classify pollen even when grains are only partially visible.

e The seventh class (Contamination/Blurry) consists of two types of particles. The first includes ‘contamination’ particles
from the GRIP ice core external surface (Table 1, Fig. C7). Such a layer typically contains particles from the core drilling,
cutting and handling operations such as paper wrap, glove clothing fibers and graphite from the pencil used to mark the
core sections. The second type of particles added to this class includes relatively large and poor quality images, i.e.
out of focus. The particles collected for this class are obtained from GRIP sample measurements followed by offline

manual validation and labeling. The 7th class serves the purpose of a controlled channel to reduce false positives in all


Reviewer
What about composite rock fragment or sponge spicules? They have also been found in ice cores and tend to be larger than 80 microns. Would you have a way of filtering them out?

Niccolo MAFFEZZOLI
Currently we have not investigated such particles. Particles bigger than 80 um would require a bigger flow cell.
Please see the other comment on the sample recovery.

Reviewer
I am trying to better grasp what blurry images mean. Are the particle falling out of the optical plane or are they moving too fast to be imaged. Would you elaborate?

Niccolo MAFFEZZOLI
Thanks for the question. While in principle both can occur, it is pretty easy to understand whether the blurriness is caused by their speed. This can happen if the pump speed is set too high and can be checked ahead of the analysis using the perfectly circular plastic beads. If the pump speed is set too high, they will be imaged as ellipses. 
The blurriness is driven by the finite focal plane of the camera which particularly affects small particles that have a greater change of being positioned outside of it. Additionally, the finite resolution of the camera also plays a role, predominantly affecting small particles.
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other classes that bring a climate significance. While blurry images is an intrinsic limitation of this methodology, the

Contamination/Blurry class allows to flag the particles that carry climate significance from those that do not.

2.3 Model

2.3.1 Hybrid deep neural network
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Figure 1. Model architecture. The top branch of the network is a resnet-18 CNN (He et al., 2016). BN and ReL.U layers are omitted for
clarity, as well as skip connections. The bottom branch operates on the numerical features and consists of 3-layer Multilayer Perceptron. The

separate outputs of the two branches are concatenated into a final classification branch. Indicated in brackets are the input and output shapes

of some layers along the network.

The developed model is a hybrid network that supports mixed data inputs (Fig. 1). It is composed of two branches, a
Convolutional Neural Network (CNN) and a Multi Layer Perceptron (MLP), fed respectively by particle images and the corre-
sponding 34-dimensional numerical feature vectors (metadata). The CNN consists of a resnet-18 architecture (He et al., 2016).
This network is composed of multiple convolution layers that progressively increase the number of filters while decreasing
the feature map size. Batch Normalization (BN) layers are placed right after each convolution layer and before ReLU (Rec-
tified Linear Unit) activations. The network ends with an average pooling layer and a final FC (Fully Connected) layer that

compresses the image into a 64-d embedding. This vector is concatenated to the output of the MLP, formed by two series of
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FC-BN-ReLU-Dropout layers followed by a final FC layer that produces a 32-d representation. Following the concatenation
of the two network branches, a first FC-BN-ReLU stack is placed before the final FC layer that precedes a sigmoid activation.

2.3.2 Data preprocessing and augmentation

All images are reshaped by linear interpolation to 128x128 pixels. The downside of reshaping compared to zero-padding (i.e.
increasing the image size by adding zeros to the borders) is that warping effects are introduced in images with large height to
width differences, and the fact that the size information is lost. However, zero-padding to the largest image size would largely
increase the computational complexity. We also argue that the size information is retained by the model in the metadata branch,
that includes multiple features related to the geometry and the size of the particles. A per-image normalization to zero mean
and unit variance is used to preprocess the images. Data augmentation during training consists of random rotations (p=0.5), as

either horizontal, vertical or both horizontal and vertical flips. All metadata are also normalized by scaling to zero mean and
unit variance.

2.3.3 Model training, validation and test
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Figure 2. (a) Model loss (dashed) and accuracy (solid) evaluated during training (black) and validation (gray). (b) Confusion matrix of the

best model evaluated on the test dataset. The accuracy across all classes is 96.8%. Most misclassifications occur within the two Quercus
classes.

The data are split into three separate datasets: training, validation and test. Both the validation and test datasets consist of a
random 500 item/class subset, for a total of 3500 items. A transfer learning approach is adopted for the convolutional branch

of the network as the CNN pretrained on the Imagenet dataset is found to train faster. The whole network is trained on mini

165 batches of 512 items using a binary cross entropy loss. The training dataset size of each class is indicated in Table 1. Since the



170

175

180

185

190

195

https://doi.org/10.5194/tc-2022-148
Preprint. Discussion started: 26 August 2022 The Cryosphere
(© Author(s) 2022. CC BY 4.0 License. Discussions

training dataset is unbalanced, a weighted loss is implemented by enforcing a different weight w for each class ¢ (Eq. 1):

max size(c)
w, = —————,c € classes. (1)
size(c)

Underfitting and overfitting is checked after every epoch (a cycle of training the network) by monitoring the loss and the
accuracy on the validation dataset. Adaptive AdamW is used as optimizer (Loshchilov and Hutter, 2017), with a learning rate
of 1074, betas=(0.9, 0.999), a weight decay of 0.01 and a dedicated scheduler that imposes a learning rate decay of 0.1 every 5
epochs. The best hyperparameters (dropout probabilities, number and dimensionality of FC layers) are found by random search
by maximizing the accuracy on the validation dataset. The final best model is evaluated on the test dataset.

The model converges to an average 96.8% accuracy across all classes in 15 epochs (Fig. 2). Dust and C. avellana images are
classified with very high accuracy. Slightly lower accuracy is found among the two tephra classes, with on average 1% particles
classified as the wrong tephra class and some 1-2% misclassified as ‘Contamination’. The Quercus species are identified with
an accuracy of ~90-95%, the remaining fraction being misclassified mostly as the wrong Quercus. No misclassification is

found between the three pollen and all other classes.

3 Results and discussion

The following discussion is divided into three sections. In Section 3.1 we investigate the FlowCam ability to correctly detect
dust, with particular focus on the reconstruction of the size distribution and the mass concentrations, followed by the compari-
son with the Coulter Counter on a number of alpine ice core samples. In section 3.2 we discuss pollen and the representativeness

of their training datasets. In Section 3.3 the model is deployed on Greenland ice core samples containing volcanic ash horizons.

3.1 Dust
3.1.1 Standard Reference Material: size reconstruction, LODs and mass concentrations

The certified reference material ERM FD066 Aluminum Oxide powder is used to evaluate the performance of the system as
a dust detector. We measure a solution containing FD066 powder, run the model on the acquired images and metadata and
evaluate the Eb distribution. All particles are classified as ‘dust’ by the model. The number-weighted ABD distribution
percentiles are consistent within 10 to the certified values (Table 2, Fig. S2).

The mass concentration of a sample can be calculated by summing the particles ABD-based volumes, dividing by the sample
imaged volume and multiplying by the density. The Aluminium Oxide density is 3.96 g/cm?. An alternative metric to the ABD
is the Equivalent Spherical Diameters (ESD, Appendix B), a measure of an object size based on its orientation. However, we
find that ESD volume quantifications are not consistent with the expected volume distribution of FD066 samples (not shown),
in agreement with previous studies that found that ESD leads to overestimate volumes of particles with extended parts and
appendages (Karnan et al., 2017; Kydd et al., 2018). Our results show that the ABD metric can be therefore considered
appropriate for reconstructing the size of dust particles with a distribution similar to that of the FD066 material, as well as of

spheres (Fig. S1).
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Table 2. Comparison between the FD066 ABD size distributions certified by Scanning Electron Microscopy (Linsinger et al., 2019) and
calculated using the FlowCam (this study).

FD066 ABD size distribution ABD (um, +10) certified by SEM ABD (um) reconstructed by FlowCam
percentiles (Linsinger et al., 2019) (this study)
X5,0 1.07 £ 0.23 1.14
X10,0 1.28 £ 0.24 1.06
X25,0 1.71 £0.28 2.07
X50,0 24 +04 2.5
X75,0 334+04 33
X90,0 44+04 4.5
X95,0 51+04 5.1
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Figure 3. Analysis of n=91 system blanks (black, top row) and n=63 procedural blanks (red, bottom row). Median mass concentrations
(left distributions) of 1.0£1.6 ppb(10) and 2.4+2.8 ppb(10) result in a 30 LOD of 6 ppb for system blanks and 11 ppb for procedural
blanks respectively. The middle plots show the number concentration distributions and respective LODs. The right plots indicate the size
distributions of blank particles in system (top, N=2864) and procedural (bottom, N=3945) blanks, rarely exceeding 3 pum. All particles are

classified as dust by the model. The mass concentrations are calculated assuming a density of 2.5 g/cm?.

Given the low dust concentrations in ice core records, it is crucial to investigate the blank levels of the analytical system
as well as the impurity content of the used glassware. We define system blank as the instrumental response to ultrapure water

(UPW, 18.2M€/cm) directly injected into the system. The system blanks can be thought of as the blank level of a CFA system,
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in which no discrete vials are used and the sample stream directly feeds the FlowCam from the melt head (although a tubing
connection would be needed). We define procedural blanks as the instrumental response to UPW stored in sterile ultra-clear
polypropylene VWR centrifuge tubes (model 21008-216) prewashed 5 times with UPW. No acids are used. A set of n=91
system blanks and n=63 procedural blanks are investigated (Fig. 3). The model classifies the totality of particles in both the
system and procedural blanks as dust, with diameters rarely exceeding 3 um (Fig. 3). The limits of detection (LOD) are
calculated as the median plus 3 standard deviations. The mass concentration and ber concentration LODs of the system
blanks are respectively 6 ppb and #/mL. The mass concentration and numconcentration LODs of the procedural
blanks are respectively 11 ppb and 3400 #/mL. In comparison, the LOD of the Es reported as 2 ppb (Ruth et al., 2008).
The lowest dust concentrations in ice records are found in Antarctica during interglacial periods, with levels of about 10 ppb
over the plateau (Lambert et al., 2008) and a few ppb towards high accumulation coastal sites (Vallelonga et al., 2004). The
FlowCam LODs thus allow quantification of dust in all sites globally except for coastal Antarctic interglacial records. It is
likely possible to further lower the instrument LODs by operating the FlowCam inside a clean room.

We next evaluate the quantification of dust mass concentrations, by comparing the FlowCam to the Coulter Counter. Discrete
dust samples for FlowCam analyses are prepared by diluting a known mass of FD066 material (weighted on a 10~6 g accuracy
scale) in ultrapure water, and subsequent dilutions using VWR centrifuge tubes. The concentration of the final samples ranged
from 44 ppb to 14 ppm (Fig. 4). All acquired particle images are classified as dust by the model. The ABD-based volumes are
converted to mass using the FD066 density, 3.96 g/cm?®. Similarly prepared samples are measured by Coulter Counter at the
University of Milano-Bicocca, by adopting the same analytical steps as described in (Baccolo et al., 2021). The LOD of the
CC, calculated as 3 standard deviations above the average of n=7 UPW samples, is 10 ppb. For both the FlowCam and CC
experiments the blank levels are subtracted to the concentration values of the samples. The FlowCam mass concentrations are
consistent with the expected values and a good linear agreement is found across the investigated range (Fig. 4), spanning from
low Antarctic to high mid-latitude glacier dust levels. The residual distribution (mean of 0.7%, 10=14%) suggests an accurate
combination of camera focus and particle volume estimation and no systematic uncertainty in the volume quantification. The
precision is evaluated by multiple repetitions of the same samples (typically 3 to 5, shown as the error bars on the points
and in the RSD distribution) and averages 19% (10=11%). The CC measurements also show good linearity (q=0.001+0.002,
m=1.05+£0.05). This experiment shows that both instruments yield accurate size and volume reconstructions for the irregularly
shaped FDO066 particles.

3.1.2 Ice core dust mass concentrations

The FlowCam and the CC mass concentration reconstructions are compared by analyzing n=24 ice samples from the Quelccaya
ice cap (Peru, Reis et al., 2022). Since the CC is particle insensitive for this comparison the classifier coupled to the FlowCam
is switched off. Two aliquots for each sample are measured by CC (Milan, Italy) and by FlowCam (Bergen, Norway). The CC
is operated with a 2-60 um capillary to accommodate the large particles common in alpine records. Each sample quantification
results from the average of three measurements. In the calculations of the mass concentrations a density of 2.5 g/cm? is

assumed.
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Figure 4. Comparison between nominal and measured concentrations of FD066 dust samples using the FlowCam and the Coulter Counter. An
orthogonal distance regression on the FlowCam data (black line with 30 confidence interval in gray) shows good linearity over three orders of
magnitude. The red line refers to the linear fit on the CC data. The y-error bars reflect 1 standard deviation of multiple repetitions of the same
sample. All x-errors are estimated as 10% of the FD066 prepared concentrations and account for the uncertainties in the dilutions and plastic
adsorption effects. Both insets refer to the FlowCam measurements: the top inset shows the relative standard deviation (RSD) distribution;
the bottom inset shows the distribution of the residuals, defined as the difference between the expected and measured concentrations. The top

bars indicate the approximate ranges of dust concentration in polar and mid-latitude records.

The samples exhibit a very large size distribution, with particle sizes extending to 60 um and a volume weighted size
distribution centered between 10 and 20 um. The dust concentrations (we here refer to the total insoluble content as dust for
simplicity) range from 1 to 15 ppm and a median of 2 ppm. The comparison of the two instruments across the batch of 24
samples reveals that the FlowCam mass concentrations are systematically lower than those measured by CC. In particular,
the cumulative distribution function of the mass concentration, CDF(x) = fox conc(z)dz, reveals that fewer big particles are
captured by the FlowCam compared to the CC, explaining the lower values of the FlowCam (Fig. S3).

We argue that the causes are twofold. First, the FlowCam images a very low amount of volume (the highest efficiency

achievable in our setup, 41.8%, is reached by minimizing the pump rate, 0.02 mL/min, and maximizing the camera shutter

11
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Figure 5. Mass concentration CDF ratios between the CC and the FlowCam as a function of a size cutoff. The best agreement is found at a

cutoff value of 10 um. If larger particles are included in the quantification of the concentration, the FlowCam concentrations are consistently

lower than the CC.

to 22 FPS). For example, for a 3 min analysis only 0.025 mL of sample is imaged, compared to 0.5 mL on the CC. The
low statistics has a notable effect in the estimation of the mass concentration, since big particles are rare and provide a large
contribution to the volume. The underestimation of large (> 50 pm) particle concentrations using the FlowCam compared to
manual microscopy has been previously reported (Kydd et al., 2018). A possible second cause for the FlowCam undershoot
— e discrete mode of analysis. During manual sample injection into the FlowCam, big particles quickly flow through the
Eﬂment by gravitational settling, while smaller particles remain more easily suspended in the solution and are continuously
detected throughout the analysis time. We argue that the fast gravitational separation of particles of different sizes leads to
underestimated concentrations especially for high analysis time. It may be possible to reduce the gravitational separation by
using a continuous-flow injection system with the tubing placed horizontally, as in an ice core CFA melting system, or by
operating in discrete mode using sample agitation equipment.

We investigate to which extent (in terms of particle size) the concentrations of the CC and the FlowCam can be compared.
For each method we calculate the concentration of all 24 samples by only considering particles smaller than a certain value,
progressively increased from 3 to 60 um. The comparison is quantified by evaluating the slope of an orthogonal distance
linear regression between the concentration CDFs with respect to the size cutoff (Fig. 5). The best agreement is found if only
particles up to ca. 10 um are accounted for (m=0.8640.16). For bigger particle sizes, the FlowCam underestimates the CC

concentrations by up to ~3. This analysis is consistent with the good match previously found using the small-sized FD066

material (Fig. 4).
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From the two FlowCam-CC comparisons carried out on the small-sized FD066 dust and on alpine samples we conclude that,
in the experimental conditions of our setup (discrete mode of operation, 80 um flow cell and 20x magnification), the FlowCam
is to be used for evaluating mass concentrations of particles up to only ~10 um. For samples containing larger particles the
mass (and number), the FlowCam concentrations will be underestimated by up to ~3. To improve the accuracy, the statistics
at high particle sizes can be increased by i) increasing the efficiency of the instrument using larger volume cells, ii) increasing

the measurement time alongside sample agitation equipment.
3.2 Pollen

Given the similarity of pollen grains, we investigate the representativeness of the three training datasets used to classify these
types of particles. The analysis is carried out by training the model using slightly different training datasets and by evaluating
the classification accuracy on controlled samples of specific types. 5 different C. avellana types were made available for this
experiment, labeled A, B, C, D, E. They reflect samples collected from different trees within the same sampling region. We
build three training datasets: type A, type B, and the last one prepared by mixing all five types together (referred to as Mix).
We then train the model 4 times separately using type A, type B, type Mix and all of them together (A+B+Mix), and each
time we evaluate the pollen predictions of a pure type B dataset. The training datasets of all the other classes are kept fixed. In
particular, the Q. robur and Q. suber datasets consist of two types for each one mixed together. After each training session, a
validation stage on 500 images of each type is evaluated for performance and hyperparameter tuning. No substantial change in
any hyperparameter is found to be affecting the accuracy on the validation set, which is consistently 0.97-0.99 for C. avellana
and between 0.90-0.96 for the two Quercus species. The model trained with the Corylus A dataset yields only 48% correct
Corylus predictions, when deployed on a Corylus B sample (N=5 replicates, Table 3). It appears that the Corylus A training
dataset is not fully representative of the Corylus B sample. If the model is trained with a Corylus B, the percentage of Corylus
classification in the Corylus B sample increases to 96%. If a Corylus Mix training set is used, the correct accuracies are 97%.
If the model is trained with all datasets joined together (A+B+Mix), the correct Corylus predictions are 98%. The best result
can therefore be achieved if the model is trained with the widest dataset in terms of particle variability.

A similar test is carried out for the Q. robur class. The model is trained separately using a Q. robur A, a Q. robur B and
a joined Q. robur A+B dataset and used each time to classify a pure Q. robur B sample (N=3 replicate measurements). The
model is trained by keeping a fixed Corylus A+B+Mix and Q. suber A+B datasets. The results show that only 2.3% of the
images in the Q. robur B sample are correctly classified as Q. robur if the model is trained with the Q. robur A dataset (Table
3). The correct predictions are 91% if the Q. robur B training dataset is used instead. By training using a joint Q. robur A+B
dataset, the percentage of correct robur predictions remains similar. Unlike the Corylus test, no Q. robur Mix is available.

The test on the Q. suber type is analogous to the Q. robur test. The model is trained three times separately on a Q. suber A,
a Q. suber B and on a Q. suber A+B dataset and each time used to classify a pure Q. suber B sample (N=10 measurements).
When the model is trained with the Q. suber A dataset, only 4% of the pollen in the Q. suber B sample are correctly classified
as Q. suber (Table 3). The correct classifications rise to 90% if the model is trained with either the Q. suber B or with the Q.
suber A+B dataset.

13
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From these tests we conclude that the representativeness of the training dataset is crucial to achieve the highest pollen
classification accuracy. For all three pollen types, the best classification is achieved with the largest training datasets. Under
this condition the classification accuracy of C. avellana, Q. robur and Q. suber is respectively 98+1%, 91£1% and 90+3%,
similarly to what was previously found (Fig. 2b). We argue that a further increase in accuracy and a more general model may
be achieved by further increasing the training datasets in both variability and in size. As a sense of the model predicting power,
it should be noted that expert palynologists cannot efficiently classify the Q. robur and Q. suber species by looking at the
FlowCam images. The state-of-the-art classification accuracy between Q. robur and Q. suber, 98+2%, can be achieved by
analyzing the different pollen chemical signatures by using Fourier-transform infrared spectroscopy (Muthreich et al., 2020).
We also find that the absolute number of images classified as pollen varies by just, on average, 0.4% , suggesting that pollen

detection (irrespective of the pollen class) is largely independent of the choice of the training dataset.

x X X X x 1.0%
x —
X x X o x x x X . X o_gé
C. avellana Q. robur Q. suber 0.8
10000 1
=
gsooo-+++++ +++++
~
c
Q
S 6000
Q
i
o 4000
c
S
2000 1 | |
[ Conc. before mixing /3
@ Conc. after mixing

123 45 123 45 123 45
Model run

Figure 6. Quantification of pollen concentrations in single types samples and in a mixed sample. The model was deployed to classify
and quantify pollen concentrations in three samples containing purely C. Avellana (red), Q. robur (blue) and Q. suber (green) pollen. The
percentages of correct predictions among the three pollen classes are indicated in the top right axis as a function of 5 independent model
runs. One third of the sample pollen concentrations (as averages of 5, 3 and 10 aliquots respectively for C. Avellana, Q. robur and Q. suber)
are indicated as histogram bars along with 1o error bars displayed with light colors. The model was also used to classify and quantify pollen

in a 1:1:1 mix of the original samples (dots and solid colored error bars reflect the average values and 1o of 10 aliquot).

We finally train a model 5 times using the largest datasets: C. avellana A+B+Mix, Q. robur A+B and Q. suber A+B. The
model is then used to classify particles in three samples containing only one type of pollen. The analysis is performed on 5
aliquots of the C. avellana sample, 3 aliquots of the Q. robur sample and 10 aliquots of the Q. suber sample. Afterwards, the
three samples are mixed together in a 1:1:1 volume ratio and the model is used to classify particles in 10 aliquots of the mixed
sample. As previously found the model behaves well in classifying the C. avellana pollen, with 98% of all particles classified
correctly (Fig. 6, red). The classification accuracy for the Q. robur and Q. suber averages 90% accuracy (Fig. 6, blue and

green). The concentrations of the pollen species before mixing (bars) and the concentration of the species as classified by the
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model after the mixing agrees (dots) is reasonably consistent for the C. avellana and Q. robur pollen, while some departure
from the expected concentration is found for the Q. suber class. The results do not show significant differences with respect to
the model runs, suggesting that the model converges to similar parameters. However, in all separate runs a significant spread is
found between the aliquots, particularly with respect to C. avellana classification (10 are indicated as the error bars in Fig. 6),
which suggests that robust quantification of pollen concentrations should be achieved by multiple measurements. The Q. suber
concentration mismatch is tentatively attributed to the cell being partially clogged that led to an underestimated concentration
before mixing.

The pollen experiments suggest that the developed framework is promising for pollen autonomous classification under the
condition that the most representative datasets are used for training. Additionally, the representativeness of fresh pollen as a
training dataset for microfossil ice core pollen should be investigated. We also stress that, in case of low concentrations, a
similar underestimation of the absolute number of pollen is to be expected, by a factor ~2 (Fig. 5). Intensive analysis of alpine

ice core records (where pollen is expected) is the next logical step.
3.3 Tephra

We now deploy the model to investigate the content of 12 samples from the Greenland Ice Core Project (GRIP) ice core
(Table 4). In particular, 7 of these contain known tephra deposits, selected from the tephrochronology framework of Cook
(2022), while the remaining 5 samples are known to be devoid of tephra grains (i.e. tephra grains were not observed by bench
microscopy).

The 7 tephra deposits were re-sampled, by removing a strip of 55 cm of ice (referred to as a ‘bag’) using a band saw. Each
bag strip of ice was then cut into three sections, at resolutions of 20 or 15 cm, using the same depth intervals as Cook (2022)
to ensure the same deposits could be found, and thus producing replicate tephra-containing ice core samples. The 5 tephra-free
samples were derived from ice adjoining each of the tephra layers, i.e. the remaining ice per bag. The deposits chosen for this
experiment date back to the Bglling—Allergd/Greenland Interstadial 1 (GI-1) and glacial/Greenland Stadial 2 (GS-2) periods
and comprise tephra of a similar geochemical composition as those selected for our training dataset: felsic (basaltic), mafic
(rhyolitic), or a mix thereof. For each selected depth interval, two replicate samples are obtained: the first was analyzed for
tephra by optical bench microscopy (Cook, 2022); the second one is analyzed by Flow Microscopy followed by our particle
classification model. It is important to note that, although extracted from the same horizon, the samples dedicated to the two
analyses are different and non-homogeneity can affect the lateral distribution of insoluble matter at the same depth interval
(Cederstrgm et al., 2021). Additionally, we note that the samples contain contamination particles, as the outer surface of the
core collects impurities from drilling and processing activities. The samples dedicated to tephra investigation have typically
been extracted from these external sections, as the analyst is able to distinguish tephra from other types of matter using the

bench microscopy.
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3.3.1 Optical microscopy for tephra analysis

The samples dedicated to tephra analysis by optical microscopy were prepared as in Cook et al. (2018B). Specifically, the
samples were melted, centrifuged, evaporated and the remaining material was embedded in epoxy resin. Optical microscopy
tephra counts range between 0 to 5000 shards per sample, corresponding to concentrations from 0 to 111 shards/mL (Table
4). The counting errors, estimated in Table 4, also incorporate the uncertainties related to the loss of material during the
centrifuge and due to adhesion onto the used plastic tubes. It is worth noting that microscopy counts of tephra are typically
only performed above a size threshold for which the human operator is confident to differentiate tephra grains from mineral

dust: ~8 um. Replicate counting on the same samples would be needed to more rigorously quantify the manual counting errors.
3.3.2 Flow Imaging Microscopy and particle classification

The samples dedicated to FlowCam analyses, whose original volumes were between 28 and 56 mL (Table 5), were concentrated
by centrifuge down to less than 0.5 mL, following the same sample processing adopted for optical microscopy for the sake
of consistency, except for the embedding in epoxy resin. As an additional step, given the very high particle concentration that
would obstruct the flow cell, the samples were diluted by adding ultrapure water, between 0.5-1.0 mL. The imaged volume
of each sample was 0.2-0.3 mL. In total, up to hundreds of thousands of images were collected per sample, for a total of
3,085,063 images (Table 5). As expected, most particles (91-98% of the total content) are classified as dust by the model.
The remaining fraction is almost fully explained by Contamination/Blurry particles (2-9%). Their presence derives from the
nature of the analyzed samples, extracted from the core surface and thus loaded with external impurities. It is possible that the
Contamination/Blurry predictions contain some particles of climate significance but we expect this number to be very small.
A total of n=921 particles are classified as pollen (209 C. avellana, 375 Q. robur and 337 Q. suber, Table 5). By visually
inspecting these particles it is clear that, due to their blurriness, only few of them can be confidently identified as pollen (or
spores), but the large majority of these predictions remain dubious (Fig. S5). We note that the three species of pollen used to
train the model do not fit with the spectrum of pollen species that may be found in Greenland. A better choice for polar records
would be a training dataset of Betula pollen - ubiquitous in Arctic paleoclimate records. We also argue that very likely a high
number of contamination particles are falsely predicted as pollen. The reason for such classification outcome by the model is
the round shape of such particles, and their similar size to that of the three pollen species (Sect. 3.3.4).

A total of n=1671 particles are classified as tephra (949 basaltic and 722 felsic, Table 5). The tephra concentrations in the
samples, irrespective of the two types, range from 3.3 to 18 #/mL (Table 5, col J). Although in the same order of magnitude,
there are significant sample-to-sample differences compared to concentrations determined by manual counting (Table 4). It
should be noted that the samples measured using the two techniques are different and some non-homogeneities with regard to
tephra deposition can be expected (Pyne-O’Donnell, 2011). We also argue that, while the model accuracy does not depend on
the tephra concentration, human-operated microscopy is probably more effective for higher concentrations. This could explain

why the modeled concentrations are always above zero. We also note that the modeled values are expected to be underestimated
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by a factor of about 2-3 from the real concentrations (Sect. 3.1.2, Fig. 5), because of fluidics/loss of material as gravitational

settling preferentially affects large particles.

3.3.3 Human assessment of modeled tephra predictions

Figure 7. A random subset of the Al-predicted tephras in the 3136 0-20cm GRIP sample assessed by Human#1, color coded according to

the given validation: yes (green), maybe (yellow), no (red). iameters are shown in the bottom left corners.

To further explore the model predictions and investigate the mismatch, two tephra experts were asked to assess and classify,
based on the FlowCam images, all (n=1671) modeled tephra predictions in the 12 GRIP samples (irrespective of whether they
are predicted as felsic or basaltic) into 3 classes: ‘yes’, ‘maybe’ and ‘no’ (Table 5). According to Human#1 (Human#2), of all
1671 images 16% (2%) are positively validated as tephra, 37% (56%) are dubious and 47% (41%) are considered not tephra
(Fig. S4). Of all the Al-predicted tephras, Human#1 therefore considers 53% of them are possible tephras (‘yes’+‘maybe’),
while for Human#2 considers them to be 58%. It should be noted however that the agreement between the two operators is
weak (Fig. S4): the quality of the FlowCam images often precludes a confident optical assessment of the particles (Fig. 7, Fig.
E Interestingly, some tephra shards are positively validated even in those samples for which no tephra was previously found
optical microscopy. According to both analysts, the tephra modeled predictions include a number of minerals such as
feldspar and quartz, and a few contamination particles. Minerals are routinely found during manual microscopy assessments
but can be confidently recognized using cross-polarized light (Lowe, 2011), which allows the analyst to easily distinguish
isotropic non-crystalline tephra from anisotropic minerals. In our current setup this key function is not available, but a circular

polarizer should be implemented on the FlowCam for future studies and will be key to differentiate tephra from minerals.
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The source of minerals inside the FlowCam-measured samples can be twofold: they can derive from active dust sources
proximal to the core site such as ice-free Iceland or Greenland (Simonsen et al., 2018), or be introduced artificially onto the
core surface during the laboratory handling procedure, similar to the source of the contamination particles). At this stage, it is
not possible to further speculate on the relative importance of these two sources of minerals, and additional measurements of
replicate clean ice samples would be needed. With respect to the presence of minerals within the set of tephra predictions in
the GRIP samples, the consulted experts point out that some images of minerals are also found within the two tephra training
datasets. Hence, the tendency to classify minerals as tephra is to some extent embedded in the model. Measurements of clean
ice are also needed to minimize the rate of tephra false positives from the contamination class (~1%, Fig. 2). Given the large
prior of contaminations in the GRIP samples (n=89329), 900 false positives (out of the n=1671 tephra predictions) could be

misclassified as tephras. This further advocates the need of measuring clean samples in future studies.

3.3.4 Investigating the network dynamics

.qm S
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Figure 8. UMAP 2D visualization of the network 64d layer of the CNN branch. On the left umap is run on the validation dataset. On the
right the learnt UMAP space is used to project all images of the n=12 GRIP samples. The items are color coded according to their predicted

class. Gray items represent the validation items.

To better understand the network dynamics and how the images are classified into the different classes, we probe the output
of the last FC layer of the convolutional branch of the architecture (Fig. 1). At this network depth, each original 128x128 image
becomes compressed into a 64-dimensional vector representation. We inspect such a 64d space using UMAP, an unsupervised
manifold learning and dimension reduction algorithm (Mclnnes et al., 2018). We first inject the trained network with a random
dataset of 500 items/class from the validation dataset, for a total of 3500 items. We extract the 64d representations and let
UMAP learn a 2D embedding space of the data (Fig. 8). In such representation the embedded data appear clustered according
to their respective classes, with few items mispositioned in the wrong classes (basaltic, felsic tephra and contamination/blurry)
and with some degree of overlap between the two Quercus classes that evidences the higher difficulty of the network to

distinguish these types of pollen. Overall the high degree of separation between the training items is well reflected in the
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confusion matrix (Fig. 2). The parametric UMAP model generated using the training data is then applied to the combined
dataset of n=12 GRIP samples comprising all 3,085,063 images. The images are injected into the network, and the 64d vectors
are extracted and reprojected onto the learnt UMAP space (Fig. 8). Overall, the GRIP items are projected on top of the training
clusters, with the exception of a secondary smaller cluster of Tephra B. found encompassed within the Contamination and
Tephra F. clusters which evidences that some Tephra B. images incorporate some features that are common to all three classes.
The Quercus predictions are located at the intersection of the two respective training clusters. Some C. avellana predictions are
found scattered outside its training cluster, thus not fully representing the features of the training images. Figure S5 shows the
same plot with the dots replaced by images. Such a representation also allows us to inspect a number of features. For example,
different light conditions characterize images located in different areas within the dust cluster (both the validation and GRIP
data). The light from the camera flash can be occasionally redirected to the camera shutter if the dust particle is oriented in
such a way that the light becomes significantly backscattered. In such a condition the dust particles becomes white on a darker
background. Different colors are also found within the training Tephra B. cluster, mostly consisting of dark particles and fewer
brighter particles located at the margins on the cluster. The Tephra B. GRIP cluster contains a higher proportion of bright
particles compared to its training counterpart. Bright tephra classifications are more frequently predicted as Tephra F., although
a secondary cluster of bright Tephra B. images is found positioned at the interface between the Tephra F. and contamination
clusters. The contamination cluster contains a number of particles that have been introduced during handling operations, such
as long and rod looking particles likely from glove fabrics. Blurry images are also present in this class (as the model was
trained to do so). They may or may not be legitimate ice core particles. Particles classified as pollen in the GRIP samples are
blurrier than those in the training sets. However, they generally show round shapes and significant size >10 pm. These two
features are consistent with the pollen training images, probably leading to such classification outcome. Similar to tephra, the
investigation of pollen particles should be carried out on clean samples to avoid the presence of contamination particles being

falsely classified as pollen.

4 Conclusions and perspectives

We developed a framework for the detection, autonomous classification and quantification of climate-relevant insoluble parti-
cles in ice core samples that can provide support and complement human-operated optical microscopy. Our approach is fully
reproducible, non-destructive and does not require any sample preparation, thus saving time and material. It couples Flow
Imaging Microscopy to a deep neural network for image classification. The network is trained on 7 classes of particles: mineral
dust, volcanic ash or tephra (basaltic and felsic), three species of pollen grains (C. avellana, Q. robur and Q. suber) and a class
consisting of Contamination/Blurry particles. The architecture, comprising a Convolutional and a Fully Connected network,
achieves 96.8% accuracy on the test set. Training 40 epochs requires ~30 min on a GeForce RTX 3090. The model operates
at ~300,000 img/s at test time and allows online deployment. Some key advantages, disadvantages and suggested upgrades to

the system developed in this work are outlined in Table 6.
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Figure 9. Diatoms identified in the Quelccaya ice core from the acquired FlowCam images. Particle D can be a Centrales diatom (possibly

C

7.4 um

15.3 um

tella genus) or an algae. Particle F can possibly be a fungus. All other particles are Pennales diatoms. The diameters are indicated in
—dottom left corners. The presence of diatoms in this ice record has been previously reported using SEM microscopy by Fritz et al. (2015).
A promising future application will be to naturally extend the model by incorporating additional training classes, including diatoms. At this

stage this has not been possible.

The system was investigated as a dust detector. The FlowCam can reconstruct the size distribution of Standard Reference
Material fine-grained (<10 um) dust particles within 10 of the certified values. The mass concentrations can be replicated within
ver a range from few ppb to 10 ppm, with an average precision of 19%. The Limit of Detection for dust ranges from 6
o 11 ppb. The comparison of mass concentrations with the Coulter Counter reveals a good agreement (ratio=0.86+0.16)
only for particles smaller than ~10 pm. The FlowCam exhibits a drop in efficiency in detecting larger particles that can lead to
an underestimated mass concentration of up to a factor 3. This drawback affects all types of particles and should be carefully
considered. In the presented setup, the FlowCam offers a valid alternative to the Coulter Counter and to the Abakus as a dust
detector for polar ice cores, with the advantage of being sensitive to the particle type.

We tested the classification of freshly-collected pollen grains and found - perhaps unsurprisingly - that the representativeness
of the training datasets is of exceptional importance. If the model is trained using the most general pollen datasets, Corylus
avellana can be classified at ~98% accuracy, while Quercus robur and Quercus suber can be classified at ~90% accuracy.

We applied the model to 12 GI-1 and GS-2 Greenland ice samples, containing known tephra deposits, for a total of 3+
million images. Almost the entirety of the images is classified as either dust or Contamination/Blurry particles, the latter from
the external core surface. 1671 particles are classified as tephra (either felsic or basaltic). Inspection of such images by two
tephra experts suggests that only up to ~50% are possible tephra, the remaining ~50% consisting of either Contaminations
or minerals such as quartz and feldspar. At this stage, our framework can support tephra analyses by providing first-order
information on the occurrence of volcanic layers, but we could not quantitatively replicate the tephra concentrations obtained
by optical microscopy.

Building on this work, we envision promising avenues for further research and upgrades in two main fields: data and hard-

ware.

e The existing training datasets should be extended by including other relevant particles that may be found in ice core

records (e.g. diatom frustules, Fig. 9, or Betula pollen). The noise baseline introduced by contamination/blurry particles
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should be better established by measuring clean samples. Meaningful integrations between the data that result from our

method and from human-operated optical microscopy should be outlined.

465 e Improvements of the hardware should target both the quality of the imagery (by using the more resolved color camera
featured by the FlowCam 8100 model) and the statistics (by installing a higher volume cell alongside a faster shutter
rate camera). Importantly, a polarizer would be key to separate tephra from anisotropic minerals. An improved system

should be ideally tested and deployed within a CFA workflow, targeting continuous particle records from ice cores.

Code and data availability. The training and GRIP datasets will be deposited on Zenodo. The code will be made publicly available at

470 https://github.com/nmaffe/Icelearning-software.

21



https://doi.org/10.5194/tc-2022-148
Preprint. Discussion started: 26 August 2022
(© Author(s) 2022. CC BY 4.0 License.

Table 3. Pollen experiment results. The accuracies are indicated as the average of N replicates (C. avellana: N=5, Q. robur: N=3, Q. suber:

N=10). In brackets the standard deviation of the replicates.
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Model training dataset

Model inference on a pure C. avellana B sample

Nco'r/Npollen (1 0_)

N’rob/Npollen (1 0_)

Nsub/Npollen (10_)

C. avellana A (N=7824)
Q. robur A+B (N=35276)
Q. suber A+B (N=31745)

0.48 (0.03)

0.07 (0.01)

0.45 (0.03)

C. avellana B (N=13713)
Q. robur A+B (N=35276)
Q. suber A+B (N=31745)

0.961 (0.007)

0.005 (0.004)

0.034 (0.003)

C. avellana Mix (N=25186)
Q. robur A+B (N=35276)
Q. suber A+B (N=31745)

0.970 (0.007)

0.006 (0.001)

0.023 (0.006)

C. avellana A+B+Mix (N=47723)
Q. robur A+B (N=35276)
Q. suber A+B (N=31745)

0.984 (0.004)

0.005 (0.002)

0.012 (0.003)

Model training dataset

Model inference on a pure Q. robur B sample

C. avellana A+B+Mix (N=47723)
Q. robur A (N=10239)
Q. suber A+B (N=31745)

0.11 (0.01)

0.023 (0.005)

0.87 (0.01)

C. avellana A+B+Mix (N=47723)
Q. robur B (N=24537)
Q. suber A+B (N=31745)

0.038 (0.007)

0.910 (0.01)

0.051 (0.003)

C. avellana A+B+Mix (N=47723)
Q. robur A+B (N=35276)
Q. suber A+B (N=31745)

0.036 (0.007)

0.914 (0.009)

0.050 (0.005)

Model training dataset

Model inference on a pure Q. suber B sample

C. avellana A+B+Mix (N=47723)
Q. robur A+B (N=35276)
Q. suber A (N=10663)

0.47 (0.10)

0.49 (0.09)

0.038 (0.008)

C. avellana A+B+Mix (N=47723)
Q. robur A+B (N=35276)
Q. suber B (N=20582)

0.07 (0.03)

0.03 (0.01)

0.90 (0.03)

C. avellana A+B+Mix (N=47723)
Q. robur A+B (N=35276)
Q. suber A+B (N=31745)

0.07 (0.03)

0.03 (0.01)

0.90 (0.03)
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Table 4. GRIP sample details and tephra counts by manual optical microscopy. The sample ages are derived from the GICCO5 chronology.

* Sample that corresponds to the specified age. ** The uncertainties are estimated.

GRIP sample (age) Sample depth interval (cm) Depth (m) Microscopy ice meltwater (mL) Microscopy tephra counts (+10)**  Microscopy tephra concentrations (#/mL)
0-20 1674.75 - 1674.95 33 0 0
3046 (GI-1b, 13186 yr b2k) 20-40* 1674.95 - 1675.15 36 1062450 30+1
40-55 1675.15-1675.3 33 161 0.48+0.03
0-20* 1724.25 - 1724.45 45 500043000 111467
3136 (GI-1e, 14191 yr b2k) 20-40 1724.45 - 1724.65 38 5745 1.540.1
40-55 1724.65 - 1724.8 28 0 0
0-20* 1816.1 - 1816.3 34 2041 0.59+0.03
3303 (GS-2.1a, 17238 yr b2k) 20-40 1816.3 - 1816.5 33 0 0
40-55 1816.5 - 1816.65 28 365420 13.0+0.7
0-20 1817.75 - 1817.95 33 0 0
3306 (GS-2.1a, 17326 yr b2k) 20-40 1817.95 - 1818.15 34 0 0
40-55%* 1818.15-1818.3 23 500100 22+4
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Table 6. Advantages, disadvantages and suggested upgrades to the system presented in this work.
Particle class Advantages Disadvantages Suggested upgrades

Polar dust (<10 pm)

CFA ready. Accurate mass concentration

reconstruction.

Detection Limit close to Antarctic

interglacial values.

Deployment in a clean

room.

Alpine dust

Accurate mass concentration

reconstruction for dust <10 um.

Underestimation of the >10 um fraction.

Higher volume cell.

Tephra (volcanic glass)

Can support human-operated bench

microscopy. Autonomous, no sample

preprocessing, CFA ready.

Limited to fraction >8 um.
Underestimation of particles >10 um.

Low statistics. Image quality.

Higher volume cell.

Polarizer.

Pollen

Can support human-operated bench

microscopy. Autonomous, no sample

preprocessing, CFA ready.

Underestimation of particles >10 pm.

Low statistics. Image quality.

Required training datasets
tailored to the ice core site.

Higher volume cell.

New particles (e.g.

diatoms)

Autonomous, no sample preprocessing.

Easy to implement by adding training

datasets.

Underestimation of particles >10 um.

Low statistics.

Requires specific training
datasets. Higher volume

cell.
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Appendix A: Segmentation of particle images
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Figure A1l. Segmentation of particle images. A calibration image is obtained prior to the analysis when no sample is pumped into the system
(top left). During the analysis each frame (top right) is compared to the calibration image (bottom right) and a pixel-by-pixel difference is

calculated (bottom right) and thresholded to yield the single particle images. The procedure is performed by the FlowCam software.
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Feature

Explanation

1. (ABD)

Number of pixels in the thresholded (binary) greyscale image converted to a measure of area by use

of the calibration factor. (real > 0)

2. Area (Filled)

The area represented by the particle edge and all the pixels inside the edge. (real >0) In the case of an
opaque particle Area (Filled) = ABD. However, if parts of the particle are transparent, and therefore
do not threshold as “particle”, then Area (Filled) > ABD.

3. Aspect Ratio

The ratio of the lengths of the axes of the Legendre ellipse of inertia of the particle. The Legendre
ellipse of inertia is an ellipse with its center at the particle’s centroid, and with the same geometrical
moments, up to second order, as the original particle area. A circle has the value 1.0 as does a square.

Values near zero are for particles that are long and thin. (real [0, 1])

4. Biovolume (Cylinder)

Biovolume (Cylinder) = (/4) * Geodesic Thickness2 * Geodesic Length

5. Biovolume (P.

Spheroid)

Biovolume (Spheroid) = (n/6) * Legendre Minor2 * Legendre Major

6. Circle Fit

Deviation of the particle edge from a best-fit circle, normalized to the range [0,1] where a perfect fit
has a value of 1. (real [0, 1]; 1 is the value for a perfect circle; values near zero are for particles that

are not at all circular)

7. Circularity

A shape parameter computed from the perimeter and the (filled) area. A circle has a value of 1.0.
Circularity is the inverse of Compactness. Formula: (4 x © x Area) / Perimeter?. (real [0,1]) = Pixel

Grid = Perimeter = Best-Fit Circle = Area (Filled)

8. Circularity (Hu)

An alternative measure of circularity that often provides a better indication of the circular shape of a
particle than does Circularity, especially if the particle is very small or its edge has defects. A circle
has a value of 1.0. (real [0, 1]). Ref: Zuni¢ et al. (2010).

9. Compactness

A shape parameter derived from the perimeter and the (filled) area. The more convoluted the shape,
the greater the value. A circle has a value of 1.0. Compactness is the inverse of Circularity. Formula:

Perimeter? / (4n * Area). (real > 1)

10. Convex Perimeter

An approximation of the perimeter of the convex hull of a particle. Derived from feret measurements.

11. Convexity

A shape parameter that is computed as the ratio of filled area to the area of the convex hull of the
particle. This property is sometimes called Solidity. A circle has a value of 1.0. (real [0, 1]) (A simple
way of thinking of the convex hull is to imagine taking a rubber band and stretching it around the
filled area)

(ABD,

Diameter
~rea Based Diameter)

The diameter based on a circle with an area that is equal to the ABD Area. (real > 0)
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13.  Diameter (ESD, | The mean value of 36 Feret measurements. (real > 0)

Equivalent Spherical

Diameter)

14. Edge Gradient Average intensity of the pixels making up the outside border of a particle after a Sobel Edge Detect
convolution filter has been applied to the raw camera image. (real [0, 255])

15. Elongation The inverse of Geodesic Aspect Ratio. (real > 1; 1 is the value for a circle or square; larger values are
for elongated particles)

16. Feret Angle Max Angle of the largest Feret measurement. (real [-90, +90])

17. Feret Angle Min Angle of the smallest Feret measurement. (real [-90, +90])

18. Fiber Curl A shape parameter computed from Geodesic Length and Length. Also known as Curl Index. Formula:
(Geodesic Length / Length) — 1. (real > 0)

19. Fiber Straightness A shape parameter computed from Geodesic Length and Length. Formula: Length / Geodesic Length.
(real > 0)

20. Geodesic Aspect Ra- | The ratio of Geodesic Thickness to Geodesic Length. Elongation is the inverse of this ratio. (real [0,

tio 1D

21. Geodesic Length Values obtained by modeling the particle as a rectangle and computing length and thickness by solving
the equations: Area = Geodesic Length x Geodesic Thickness Perimeter = 2 x (Geodesic Length +
Geodesic Thickness) where Area is filled area and Perimeter is the length of the particle edge not
including the lengths of edges of holes in the particle. (real > 0)

22. Geodesic Thickness | See Geodesic Length

23. Intensity The average grayscale value of the pixels making up a particle (grayscale sum / number of pixels
making up the particle). (real [0, 255]; 255 is most intense)

24. Length The maximum value of 36 feret measurements. (real > 0)

25. Particles Per Chain The number of particles that were grouped into one particle based on the nearest neighbor distance.
(integer > 1; almost always 1 if nearest neighbor distance is 0)

26. Perimeter The length of the particle edge not including the lengths of edges of holes in the particle. (real > 0)

27. Roughness A measure of the unevenness or irregularity of a particle’s surface-the ratio of perimeter to convex
perimeter. (real > 1; 1 is the value for a filled shape with convex perimeter; larger values are for
particles that have interior holes and/or a non-convex perimeter)

28. Sigma Intensity Standard deviation of grayscale values. (real > 0)

29. Sum Intensity Sum of grayscale pixel values. (real > 0)

30. Symmetry A measure of the symmetry of the particle about its center. If a particle is symmetric about the center

then the value of Symmetry is 1.0. Typically used to locate ‘broken’ or partial particles. (real [0, 1])
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31. Transparency 1 — (ABD Diameter / ESD Diameter). (real [0, 1]; O is the value for a filled circle; values near 1 are

for an elongated or irregular shape or a shape that has many interior holes)

32. Volume (ABD) Sphere volume calculated from ABD Diameter. (real > 0)
33. Volume (ESD) Sphere volume calculated from ESD Diameter. (real > 0)
34. Width The minimum value of 36 feret measurements. (real > 0)
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Random batches of n=100 training images of each class. The images have been reshaped for better visualization. The diameters

475 are indicated in the bottom left corners. Zoom in for best view.

Figure C1. Dust.

Figure C2. Felsic tephra.
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Figure C3. Basaltic tephra.
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Figure C4. Corylus avellana pollen.
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Figure C5. Quercus robur pollen.
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Figure C6. Quercus suber pollen.
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Figure C7. Contamination/Blurry particles.
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