Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2367-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2367-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar
Remote Sensing of Environmental Change (ReSEC) Research Group,
Department of Geography and Environmental Studies, Wilfrid Laurier
University, Waterloo, N2L 3C5, Canada
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
N2L 3C5, Canada
Homa Kheyrollah Pour
Remote Sensing of Environmental Change (ReSEC) Research Group,
Department of Geography and Environmental Studies, Wilfrid Laurier
University, Waterloo, N2L 3C5, Canada
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
N2L 3C5, Canada
Alex MacLean
Remote Sensing of Environmental Change (ReSEC) Research Group,
Department of Geography and Environmental Studies, Wilfrid Laurier
University, Waterloo, N2L 3C5, Canada
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
N2L 3C5, Canada
Related authors
No articles found.
Arash Rafat and Homa Kheyrollah Pour
The Cryosphere, 19, 4335–4353, https://doi.org/10.5194/tc-19-4335-2025, https://doi.org/10.5194/tc-19-4335-2025, 2025
Short summary
Short summary
Climate change in Canada’s Northwest Territories (NWT) is making lake ice less predictable, thereby affecting ice road safety for northern communities. In this study, observations of significant changes in ice formation and growth between October and December of 2021–2023 in a small NWT lake are related to changes in local snowfall and air temperatures. Collected data were used to develop simple models that can be applied to ice road planning, construction, and design under future and current climate change.
Gifty Attiah, Homa Kheyrollah Pour, and K. Andrea Scott
Earth Syst. Sci. Data, 15, 1329–1355, https://doi.org/10.5194/essd-15-1329-2023, https://doi.org/10.5194/essd-15-1329-2023, 2023
Short summary
Short summary
Lake surface temperature (LST) is a significant indicator of climate change and influences local weather and climate. This study developed a LST dataset retrieved from Landsat archives for 535 lakes across the North Slave Region, NWT, Canada. The data consist of individual NetCDF files for all observed days for each lake. The North Slave LST dataset will provide communities, scientists, and stakeholders with the changing spatiotemporal trends of LST for the past 38 years (1984–2021).
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Cited articles
Adams, W. P.: Diversity of lake cover and its implications, Musk-Ox, 181,
86–98, 1976a.
Adams, W. P.: A classification of freshwater ice, Musk-Ox, 18, 99–102,
1976b.
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O.,
Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E.,
Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change, L.
& O., 54, 2283–2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009.
Barrette, P. D.: The Tibbitt to Contwoyto winter road in the
NWT: identification of available data and research needs, NRC Publications
Archive, National Research Council of Canada, Canadian Hydraulics Centre,
No. CHC-LM-006, https://doi.org/10.4224/40000399, 2011.
Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G.,
Korhonen, J., Livingstone, D. M., Stewart, K. M., Weyhenmeyer, G. A., and
Granin, N. G.: Extreme events, trends, and variability in Northern
Hemisphere Lake-ice phenology (1855–2005), Clim. Change, 112, 299–323,
https://doi.org/10.1007/s10584-011-0212-8, 2011.
Brown, L. C. and Duguay, C. R.: The response and role of ice cover in
lake-climate interactions, Prog. Phys. Geogr., 34, 671–704,
https://doi.org/10.1177/0309133310375653, 2010.
Brown, L. C. and Duguay, C. R.: The fate of lake ice in the North American Arctic, The Cryosphere, 5, 869–892, https://doi.org/10.5194/tc-5-869-2011, 2011.
Brown, R. D., Smith, C., Derksen, C., and Mudryk, L.: Canadian in situ snow
cover trends for 1955–2017 including an assessment of the impact of
automation, Atmos. Ocean, 5, 1–16, https://doi.org/10.1080/07055900.2021.1911781, 2021.
Canada Centre for Remote Sensing (CCRS) and Natural Resources Canada
(NRCan): 2015 Land Cover of North America at 30 meters, North American Land
Change Monitoring System. Ottawa, Ont., http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-rapideye/ (last access: 25 May 2023),
2020.
Di Paolo, F., Cosciotti, B., Lauro, S. E., Mattei, E., and Pettinelli, E.:
Dry snow permittivity evaluation from density: A critical review, 17th
International Conference on GPR, 18–21 June 2018, Rapperswil, Switzerland, https://doi.org/10.1109/icgpr.2018.8441610, 2018.
Fediuk, A., Wunderlich, T., Wilken, D., and Rabbel, W.: Ground penetrating
radar measurements in shallow water environments – a case study, Remote
Sens., 14, 3659, https://doi.org/10.3390/rs14153659, 2022.
Frolov, A. D. and Macheret, Y. Y.: On dielectric properties of dry and wet
snow, Hydrol. Process., 13, 1755–1760,
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1755::AID-HYP854>3.0.CO;2-T,
1999.
Gerlitz, K., Knoll, M. D., Cross, G. M., Luzitano, R. D., and Knight, R.:
Processing Ground Penetrating Radar Data to Improve Resolution of Near
Surface Targets, Symp. Appl. Geophys. to Eng. Environ. Probl. Environment
and Engineering Geophysical Society, 561–574, https://doi.org/10.4133/1.2922036, 1993.
Gunn, G. E., Duguay, C. R., Brown, L. C., King, J., Atwood, D., and Kasurak,
A.: Freshwater lake ice thickness derived using surface-based X- and ku-band
FMCW scatterometers, Cold Reg. Sci. Technol., 120, 115–126, https://doi.org/10.1016/j.coldregions.2015.09.012, 2015.
Gunn, G. E., Jones, B. M., and Rangel, R. C.: Unpiloted Aerial Vehicle
Retrieval of snow depth over freshwater lake ice using structure from
Motion, Front. Remote Sens., 2, 675846, https://doi.org/10.3389/frsen.2021.675846,
2021a.
Gunn, G. E., Tarabara, V., Rutty, M., Bessette, D. L., and Richardson, R.
B.: Roughness and storage capacity of freshwater ice in the straits of
Mackinac, Cold Reg. Sci. Technol., 186, 103278,
https://doi.org/10.1016/j.coldregions.2021.103278, 2021b.
Harder, P., Schirmer, M., Pomeroy, J., and Helgason, W.: Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle, The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, 2016.
Harder, P., Pomeroy, J. W., and Helgason, W. D.: Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques, The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, 2020.
Ihamouten, A., Deìrobert, X., and Villain, G.: The effect of coupling on the
determination of time zero for radar antennae, Proceedings of the XIII
Internarional Conference on Ground Penetrating Radar, 21–25 June 2010, Lecce, Italy,
https://doi.org/10.1109/icgpr.2010.5550082, 2010.
Jensen, O. P., Benson, B. J., Magnuson, J. J., Card, V. M., Futter, M. N.,
Soranno, P. A., and Stewart, K. M.: Spatial analysis of ice phenology trends
across the Laurentian Great Lakes region during a recent warming period,
Limnol. Oceanogr., 52, 2013–2026, https://doi.org/10.4319/lo.2007.52.5.2013, 2007.
Jeppesen, E., Meerhoff, M., Davidson, T. A., Trolle, D., Søndergaard, M.,
Lauridsen, T. L., Beklioglu, M., Brucet, S., Volta, P.,
González-Bergonzoni, I., and Nielsen, A.: Climate change impacts on
lakes: An integrated ecological perspective based on a multi-faceted
approach, with special focus on Shallow Lakes, J. Limnol., 73, 88–111,
https://doi.org/10.4081/jlimnol.2014.844, 2014
Kallweit, R. S. and Wood, L. C.: The limits of resolution of Zero-phase
wavelets, Geophysics, 47, 1035–1046, https://doi.org/10.1190/1.1441367, 1982.
Kheyrollah Pour, H., Duguay, C. R., Scott, K. A. and Kang, K.: Improvement
of lake ice thickness retrieval from MODIS satellite data using a
thermodynamic model, IEEE T. Geosci. Remote, 55, 5956–5965,
https://doi.org/10.1109/tgrs.2017.2718533, 2017.
Kholoptsev, A. V., Podporin, S. A., and Karetnikov, V. V.: Current trends in
the ice thickness and concentration on the waterways of the Arctic, IOP
Conference Series: Earth and Environmental Science, 867, 012013,
https://doi.org/10.1088/1755-1315/867/1/012013, 2021.
Kim, J. H., Cho, S. J., and Yi, M. J.: Removal of ringing noise in GPR data by
signal processing, Geosci. J., 11, 75–81, https://doi.org/10.1007/BF02910382, 2007.
King, F., Kelly, R., and Fletcher, C. G.: Evaluation of lidar-derived snow
depth estimates from the iPhone 12 pro, IEEE Geosci. Remote Sens. Lett., 19,
1–5, https://doi.org/10.1109/lgrs.2022.3166665, 2022.
King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., and Beckers, J.: Local-scale variability of snow density on Arctic sea ice, The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, 2020.
Knoll, L. B., Sharma, S., Denfeld, B. A., Flaim, G., Hori, Y., Magnuson, J.
J., Straile, D., and Weyhenmeyer, G. A.: Consequences of lake and river ice
loss on Cultural Ecosystem Services, Limnol. Oceanogr., 4, 119–131,
https://doi.org/10.1002/lol2.10116, 2019.
Kovacs, A., Gow, A. J., and Morey, R. M.: The in-situ dielectric constant of
polar firn revisited, Cold Reg. Sci. Technol., 23, 245–256,
https://doi.org/10.1016/0165-232X(94)00016-Q, 1995.
Lei, R., Leppäranta, M., Cheng, B., Heil, P., and Li, Z.: Changes in
ice-season characteristics of a European Arctic lake from 1964 to 2008,
Clim. change, 115, 725–739, 2012.
Leica Geosystems: Leica GS16, Leica Geosystems, St. Gallen,
Switzerland, 2018.
Leppäranta, M.: A growth model for black ice, snow-ice and snow
thickness in subarctic basins, Nordic Hydrol., 14, 59–70, 1983.
Leppäranta, M.: Freezing of Lakes and the Evolution of their Ice Cover,
Springer, Berlin/Heidelberg, Germany, 84–265, 2015.
Li, L. and Pomeroy, J. W.: Estimates of threshold wind speeds for snow
transport using Meteorological Data, J. Appl. Meteorol., 36,
205–213, https://doi.org/10.1175/1520-0450(1997)036<0205:EOTWSF>2.0.CO;2, 1997.
Li, X., Peng, S., Xi, Y., Woolway,
R., and Liu, G.: Earlier ice loss accelerates lake warming in the Northern
Hemisphere, Nat. Commun., 13, 5156, https://doi.org/10.1038/s41467-022-32830-y, 2022.
Liston, G. E., Polashenski, C., Rösel, A., Itkin, P., King, J.,
Merkouriadi, I., and Haapalaand, J.: A distributed snow-evolution Model for
sea-ice applications (SnowModel), J. Geophys. Res.-Oceans, 123, 3786–3810,
https://doi.org/10.1002/2017jc013706, 2018.
Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone,
D. M., Arai, T., Raymond, A. A., Barry, R. G., Card, V., Kuusito, E., Granin,
N. G., Prowse, T. D., Stewart, K. M., and Vuglinski, V. S.: Historical Trends
in Lake and River Ice Cover in the Northern Hemisphere, Science, 289, 1743–1746, https://doi.org/10.1126/science.289.5485.1743, 2000.
Marsh, C. B., Pomeroy, J. W., Spiteri, R. J., and Wheater, H. S.: A finite
volume blowing snow model for use with variable resolution meshes, Water
Resour. Res., 56, e2019WR025307, https://doi.org/10.1029/2019wr025307, 2020.
Marshall, H., Koh, G., and Forster, R. R.: Estimating alpine snowpack
properties using FMCW radar, Ann. Glaciol., 40, 157–162,
https://doi.org/10.3189/172756405781813500, 2005.
McGrath, D., Webb, R., Shean, D., Bonnell, R., Marshall, H. P., Painter, T.
H., Molotch, N. P., Elder, K., Hiemstra, C., and Brucker, L.: Spatially
extensive ground-penetrating radar snow depth observations during NASA's
2017 SnowEx campaign: Comparison with in-situ, airborne, and satellite
observations, Water Resour. Res., 55, 10026–10036,
https://doi.org/10.1029/2019wr024907, 2019.
McGrath, D., Bonnell, R., Zeller, L., Olsen-Mikitowicz, A., Bump, E., Webb,
R., and Marshall, H.-P.: A time series of snow density and snow water
equivalent observations derived from the integration of GPR and UAV SFM
Observations, Front. Remote Sens., 3, 886747, https://doi.org/10.3389/frsen.2022.886747,
2022.
Meehan, T. G., Marshall, H. P., Deeb, E., McGrath, D., and Webb, R.: Automatic
detection of the ground through snow cover using multi-polarization
coherency, International Conference on Ground Penetrating Radar, 14–19 June 2020, Golden, Colorado, 18, 85–88,
https://doi.org/10.1190/gpr2020-023.1, 2020.
Meehan, T. G., Marshall, H. P., Bradford, J. H., Hawley, R. L., Overly, T.
B., Lewis, G., Graeter, K., Osterberg, E., and McCarthy, F.: Reconstruction
of Historical Surface Mass Balance, 1984–2017 from GreenTrACS Multi-Offset
Ground-Penetrating Radar, J. Glaciol., 67, 219–228, https://doi.org/10.1017/jog.2020.91,
2021.
Mudryk, L. R., Kushner, P. J., Derksen, C., and Thackeray, C.: Snow cover
response to temperature in observational and Climate model ensembles,
Geophys. Res. Lett., 44, 919–926, https://doi.org/10.1002/2016gl071789, 2017.
Mullan, D. J., Barr, I. D., Flood, R. P., Galloway, J. M., Newton, A. M.,
and Swindles, G. T.: Examining the viability of the world's busiest winter
road to climate change using a process-based Lake Model, B. Am. Meteorol.
Soc., 102, E1464–E1480, https://doi.org/10.1175/bams-d-20-0168.1, 2021.
Pfaffhuber, A. A., Lieser, J. L., and Hass, C.: Snow thickness profiling on
Antarctic sea ice with GPR – Rapid and accurate measurements with the
potential to upscale needles to a haystack, Geophys. Res. Lett., 44,
7836–7844, https://doi.org/10.1002/2017GL074202, 2017.
Pouw, A. F.: Utilizing Ground-Penetrating Radar to Estimate the Spatial
Distribution of Snow Depth over Lake Ice in Canada's Sub-Arctic, Theses and
Dissertations (Comprehensive), 2510, https://scholars.wlu.ca/etd/2510 (last access: 26 May 2023), 2023.
Pouw, A. F. and Kheyrollah Pour, H.: Lake Snow depth observations derived from Ground Penetrating Radar for four lakes near Yellowknife, Northwest Territories, Borealis, V1 [data set], https://doi.org/10.5683/SP3/LZ8AZU, 2023.
Rafat, A., Kheyrollah Pour, K., Spence, C., Palmer, M., and MacLean, A.: An
Analysis of Ice Growth and Temperature Dynamics in Two Canadian Subarctic
Lakes, Cold Reg. Sci. Technol., 103808, https://doi.org/10.1016/j.coldregions.2023.103808,
2023.
Robin, G. D. Q.: Velocity of radio waves in ice by means of a bore-hole
interferometric technique, J. Glaciol., 15, 151–159,
https://doi.org/10.3189/s0022143000034341, 1975.
Robin, G. D. Q., Evans, S., and Bailey, J. T.: Interpretation of radio echo
sounding in Polar Ice Sheets, Philos. T. Roy.
Soc. Lond. A, 265,
437–505, https://doi.org/10.1098/rsta.1969.0063, 1969.
Robinson, A. L., Ariano, S. S., and Brown, L. C.: The Influence of Snow and
Ice Albedo towards Improved Lake Ice Simulations, Hydrology, 8, 11,
https://doi.org/10.3390/hydrology8010011, 2021.
Sensors & Software: IceMap: Real-time, high-accuracy ice thickness
measurements, https://www.sensoft.ca/wp-content/uploads/2022/01/Icemap-Brochure_2022.pdf (last access: 26 May 2023), 2022.
Sensors & Software.: Measuring Ice Thickness using Ground Penetrating
Radar (GPR), https://www.sensoft.ca/wp-content/uploads/2016/01/Best-Practices-for-Measuring-Winter-Road-Ice-Thickness-Using-GPR.pdf (last access: 26 May 2023),
2016.
SnowHydro: GPS snow depth probe, http://www.snowhydro.com/products/column2.html (last access: 26 May 2023), 2013.
Stein, J., Laberge, G., and Lévesque, D.: Monitoring the dry density and
the liquid water content of snow using Time Domain Reflectometry (TDR), Cold
Reg. Sci. Technol., 25, 123–136, https://doi.org/10.1016/s0165-232x(96)00022-5, 1997.
Stephenson, S. R., Smith, L. C., and Agnew, J. A.: Divergent long-term
trajectories of human access to the Arctic, Nat. Clim. Change, 1,
156–160, https://doi.org/10.1038/nclimate1120, 2011.
Sturm, M. and Holmgren, J.: An automatic snow depth probe for field
validation campaigns, Water Resour. Res., 54, 9695–9701,
https://doi.org/10.1029/2018wr023559, 2018.
Sturm, M. and Liston, G. E.: The snow cover on lakes of the Arctic Coastal
Plain of Alaska, U.S.A, J. Glaciol., 49, 370–380, https://doi.org/10.3189/172756503781830539, 2003.
Sturm, M., Holmgren, J., and Liston, G. E.: Self-recording snow depth probe, USA patent,
1741, 1999.
Sturm, M., Perovich, D. K., and Holmgren, J.: Thermal conductivity and heat
transfer through the snow on the ice of the Beaufort Sea, J.
Geophys. Res., 107, SHE19-1–SHE19-17, https://doi.org/10.1029/2000jc000409, 2002.
Tiuri, M., Sihvola, A., Nyfors, E., and Hallikaiken, M.: The complex
dielectric constant of snow at microwave frequencies, IEEE J. Oceanic Eng.,
9, 377–382, https://doi.org/10.1109/joe.1984.1145645, 1984.
Vincent, L. A., Zhang, X., Mekis, E., Wan, H., and Bush, E. J.: Monitoring changes in Canada’s climate: Trends in temperature and precipitation indices based on daily monitoring data, Atmos. Ocean, 56, 332–349, https://doi.org/10.1080/07055900.2018.1514579, 2018.
Walker, B., Wilcox, E. J., and Marsh, P.: Accuracy assessment of late winter
snow depth mapping for tundra environments using structure-from-motion
photogrammetry, Arctic Sci., 7, 588–604, https://doi.org/10.1139/as-2020-0006, 2020.
Webb, R. W.: Using ground penetrating radar to assess the variability of
snow water equivalent and melt in a mixed canopy forest, Northern Colorado,
Front. Earth Sci., 11, 482–495, https://doi.org/10.1007/s11707-017-0645-0, 2017.
Webb, R. W., Jennings, K. S., Fend, M., and Molotch, N. P.: Combining
ground-penetrating radar with terrestrial lidar scanning to estimate the
spatial distribution of liquid water content in seasonal snowpacks, Water
Resour. Res., 54, 10349, https://doi.org/10.1029/2018wr022680, 2018.
Webb, R. W., Marziliano, A., McGrath, D., Bonnell, R., Meehan, T. G.,
Vuyovich, C., and Marshall, H.-P.: In situ determination of dry and wet snow
permittivity: Improving equations for low frequency radar applications,
Remote Sens., 13, 4617, https://doi.org/10.3390/rs13224617, 2021.
Wong, J.: Automatic time-picking of first arrivals on large seismic datasets, CREWES Research Report, 26, 76, 15, https://www.crewes.org/Documents/ResearchReports/2014/CRR201476.pdf (last access: 26 May 2023), 2014.
Woolway, R. I., Anderson, E. J.,and Albergel, C.: Rapidly expanding Lake
Heatwaves under climate change, Environ. Res. Lett., 16, 094013,
https://doi.org/10.1088/1748-9326/ac1a3a, 2021.
Yilmaz, Ö.: Seismic Data Analysis, SEG, https://doi.org/10.1190/1.9781560801580,
2001.
Zhang, X., Flato, G., Kirchmeier-Young, M., Vincent, L., Wan, H., Wang, X.,
Rong, R., Fyfe, J., Li, G., and Kharin, V. V.: Changes in Temperature and
Precipitation Across Canada, Chapter 4, in: Canada's Changing Climate Report, edited by: Bush, E. and Lemmen, D. S.,
Government of Canada, Ottawa, Ontario,
112–193, 2019.
Short summary
Collecting spatial lake snow depth data is essential for improving lake ice models. Lake ice growth is directly affected by snow on the lake. However, snow on lake ice is highly influenced by wind redistribution, making it important but challenging to measure accurately in a fast and efficient way. This study utilizes ground-penetrating radar on lakes in Canada's sub-arctic to capture spatial lake snow depth and shows success within 10 % error when compared to manual snow depth measurements.
Collecting spatial lake snow depth data is essential for improving lake ice models. Lake ice...