Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2367-2023
https://doi.org/10.5194/tc-17-2367-2023
Research article
 | 
15 Jun 2023
Research article |  | 15 Jun 2023

Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar

Alicia F. Pouw, Homa Kheyrollah Pour, and Alex MacLean

Related authors

Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region
Gifty Attiah, Homa Kheyrollah Pour, and K. Andrea Scott
Earth Syst. Sci. Data, 15, 1329–1355, https://doi.org/10.5194/essd-15-1329-2023,https://doi.org/10.5194/essd-15-1329-2023, 2023
Short summary
Rates and timing of chlorophyll-a increases and related environmental variables in global temperate and cold-temperate lakes
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022,https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model
Kiana Zolfaghari, Claude R. Duguay, and Homa Kheyrollah Pour
Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017,https://doi.org/10.5194/hess-21-377-2017, 2017
Short summary

Related subject area

Discipline: Snow | Subject: Instrumentation
Comparison of manual snow water equivalent (SWE) measurements: seeking the reference for a true SWE value in a boreal biome
Maxime Beaudoin-Galaise and Sylvain Jutras
The Cryosphere, 16, 3199–3214, https://doi.org/10.5194/tc-16-3199-2022,https://doi.org/10.5194/tc-16-3199-2022, 2022
Short summary
Brief communication: Application of a muonic cosmic ray snow gauge to monitor the snow water equivalent on alpine glaciers
Rebecca Gugerli, Darin Desilets, and Nadine Salzmann
The Cryosphere, 16, 799–806, https://doi.org/10.5194/tc-16-799-2022,https://doi.org/10.5194/tc-16-799-2022, 2022
Short summary
GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient
Achille Capelli, Franziska Koch, Patrick Henkel, Markus Lamm, Florian Appel, Christoph Marty, and Jürg Schweizer
The Cryosphere, 16, 505–531, https://doi.org/10.5194/tc-16-505-2022,https://doi.org/10.5194/tc-16-505-2022, 2022
Short summary
Snow water equivalent measurement in the Arctic based on cosmic ray neutron attenuation
Anton Jitnikovitch, Philip Marsh, Branden Walker, and Darin Desilets
The Cryosphere, 15, 5227–5239, https://doi.org/10.5194/tc-15-5227-2021,https://doi.org/10.5194/tc-15-5227-2021, 2021
Short summary
Review article: Performance assessment of radiation-based field sensors for monitoring the water equivalent of snow cover (SWE)
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021,https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary

Cited articles

Adams, W. P.: Diversity of lake cover and its implications, Musk-Ox, 181, 86–98, 1976a. 
Adams, W. P.: A classification of freshwater ice, Musk-Ox, 18, 99–102, 1976b. 
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change, L. & O., 54, 2283–2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009. 
Barrette, P. D.: The Tibbitt to Contwoyto winter road in the NWT: identification of available data and research needs, NRC Publications Archive, National Research Council of Canada, Canadian Hydraulics Centre, No. CHC-LM-006, https://doi.org/10.4224/40000399, 2011. 
Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G., Korhonen, J., Livingstone, D. M., Stewart, K. M., Weyhenmeyer, G. A., and Granin, N. G.: Extreme events, trends, and variability in Northern Hemisphere Lake-ice phenology (1855–2005), Clim. Change, 112, 299–323, https://doi.org/10.1007/s10584-011-0212-8, 2011. 
Download
Short summary
Collecting spatial lake snow depth data is essential for improving lake ice models. Lake ice growth is directly affected by snow on the lake. However, snow on lake ice is highly influenced by wind redistribution, making it important but challenging to measure accurately in a fast and efficient way. This study utilizes ground-penetrating radar on lakes in Canada's sub-arctic to capture spatial lake snow depth and shows success within 10 % error when compared to manual snow depth measurements.