Articles | Volume 17, issue 5
https://doi.org/10.5194/tc-17-1997-2023
https://doi.org/10.5194/tc-17-1997-2023
Research article
 | 
12 May 2023
Research article |  | 12 May 2023

Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)

Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer

Related authors

Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024,https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024,https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Radar-equivalent snowpack: reducing the number of snow layers while retaining their microwave properties and bulk snow mass
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
The Cryosphere, 19, 2949–2962, https://doi.org/10.5194/tc-19-2949-2025,https://doi.org/10.5194/tc-19-2949-2025, 2025
Short summary
Evaluating sensitivity of optical snow grain size retrievals to radiative transfer models, shape parameters, and inversion techniques
James W. Dillon, Christopher P. Donahue, Evan N. Schehrer, and Kevin D. Hammonds
The Cryosphere, 19, 2913–2933, https://doi.org/10.5194/tc-19-2913-2025,https://doi.org/10.5194/tc-19-2913-2025, 2025
Short summary
Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025,https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Evaluation of the Snow Climate Change Initiative (Snow CCI) snow-covered area product within a mountain snow water equivalent reanalysis
Haorui Sun, Yiwen Fang, Steven A. Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
The Cryosphere, 19, 2017–2036, https://doi.org/10.5194/tc-19-2017-2025,https://doi.org/10.5194/tc-19-2017-2025, 2025
Short summary
UAV LiDAR surveys and machine learning improves snow depth and water equivalent estimates in the boreal landscapes
Maiju Ylönen, Hannu Marttila, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, and Pertti Ala-Aho
EGUsphere, https://doi.org/10.5194/egusphere-2025-1297,https://doi.org/10.5194/egusphere-2025-1297, 2025
Short summary

Cited articles

A2 Photonic WISe, https://a2photonicsensors.com/wise-sensor-liquid-water-content-snow/ (last access: 15 October 2022), 2021. a
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain Hydrology of the Western United States, Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006. a
Balzter, H.: Forest Mapping and Monitoring with Interferometric Synthetic Aperture Radar (InSAR), Prog. Phys. Geogr., 25, 159–177, https://doi.org/10.1177/030913330102500201, 2001. a
Bekaert, D., Walters, R., Wright, T., Hooper, A., and Parker, D.: Statistical Comparison of InSAR Tropospheric Correction Techniques, Remote Sens. Environ., 170, 40–47, https://doi.org/10.1016/j.rse.2015.08.035, 2015. a
Bekaert, D. P., Jones, C. E., An, K., and Huang, M.-H.: Exploiting UAVSAR for a Comprehensive Analysis of Subsidence in the Sacramento Delta, Remote Sensing of Environment, 220, 124–134, https://doi.org/10.1016/j.rse.2018.10.023, 2018. a
Download
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Share