Articles | Volume 17, issue 5
https://doi.org/10.5194/tc-17-1997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)
Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Reno, NV, USA
Department of Geography, University of Nevada, Reno, Reno, NV, USA
Ryan W. Webb
Department of Civil and Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY, USA
Hans-Peter Marshall
Department of Geosciences, Boise State University, Boise, ID, USA
Anne W. Nolin
Department of Geography, University of Nevada, Reno, Reno, NV, USA
Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Reno, NV, USA
Franz J. Meyer
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Related authors
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Kajsa Holland-Goon, Randall Bonnell, Daniel McGrath, W. Brad Baxter, Tate Meehan, Ryan Webb, Chris Larsen, Hans-Peter Marshall, Megan Mason, and Carrie Vuyovich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2435, https://doi.org/10.5194/egusphere-2025-2435, 2025
Short summary
Short summary
As part of the NASA SnowEx23 campaign, we conducted detailed snowpack experiments in Alaska’s boreal forests and Arctic tundra. We collected ground-penetrating radar measurements of snow depth along 44 short transects. We then excavated the snowpack from below the transects and measured snow depth, noting any vegetation and void spaces. We used the detailed in situ measurements to evaluate uncertainties in ground-penetrating radar and airborne lidar methods for snow depth retrieval.
Kori L. Mooney and Ryan W. Webb
The Cryosphere, 19, 2507–2526, https://doi.org/10.5194/tc-19-2507-2025, https://doi.org/10.5194/tc-19-2507-2025, 2025
Short summary
Short summary
This study observes the movement of snow water equivalence (SWE) during mid-winter surface melt and spring snowmelt periods. We observed that the south-facing slope that experienced mid-winter surface melt events showed meltwater flowing downslope through the snow. The north-facing slope saw a similar redistribution of meltwater during the spring snowmelt period.
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
The Cryosphere, 19, 1675–1693, https://doi.org/10.5194/tc-19-1675-2025, https://doi.org/10.5194/tc-19-1675-2025, 2025
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. Yet previous work has not directly compared machine learning algorithms for snow classification across satellite image products. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using several image products and machine learning models. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover.
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Kel N. Markert, Hyongki Lee, Gustavious P. Williams, E. James Nelson, Daniel P. Ames, Robert E. Griffin, and Franz J. Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3491, https://doi.org/10.5194/egusphere-2024-3491, 2024
Short summary
Short summary
Flooding is a major problem and predicting it accurately over large areas is tough. This study tested a new approach to forecast floods across a large region in the United States. By dividing the area into smaller areas to develop the prediction models and then combining, the method successfully simulated surface water extent for both high and low flow periods. The results were more accurate than existing approaches with similar methods which can improve flood forecasting for larger areas.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon
The Cryosphere, 18, 3723–3740, https://doi.org/10.5194/tc-18-3723-2024, https://doi.org/10.5194/tc-18-3723-2024, 2024
Short summary
Short summary
The active layer thaws and freezes seasonally. The annual freeze–thaw cycle of the active layer causes significant surface height changes due to the volume difference between ice and liquid water. We estimate the subsidence rate and active-layer thickness (ALT) for part of northern Alaska for summer 2017 to 2022 using interferometric synthetic aperture radar and lidar. ALT estimates range from ~20 cm to larger than 150 cm in area. Subsidence rate varies between close points (2–18 mm per month).
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Ahmad Hojatimalekshah, Zachary Uhlmann, Nancy F. Glenn, Christopher A. Hiemstra, Christopher J. Tennant, Jake D. Graham, Lucas Spaete, Arthur Gelvin, Hans-Peter Marshall, James P. McNamara, and Josh Enterkine
The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, https://doi.org/10.5194/tc-15-2187-2021, 2021
Short summary
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
Simon Zwieback and Franz J. Meyer
The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021, https://doi.org/10.5194/tc-15-2041-2021, 2021
Short summary
Short summary
Thawing of ice-rich permafrost leads to subsidence and slumping, which can compromise Arctic infrastructure. However, we lack fine-scale maps of permafrost ground ice, chiefly because it is usually invisible at the surface. We show that subsidence at the end of summer serves as a
fingerprintwith which near-surface permafrost ground ice can be identified. As this can be done with satellite data, this method may help improve ground ice maps and thus sustainably steward the Arctic.
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Short summary
We simulate the flow of liquid water through snow and compare results to field experiments. This process is important because it controls how much and how quickly water will reach our streams and rivers in snowy regions. We found that water can flow large distances downslope through the snow even after the snow has stopped melting. Improved modeling of snowmelt processes will allow us to more accurately estimate available water resources, especially under changing climate conditions.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Miguel A. Aguayo, Alejandro N. Flores, James P. McNamara, Hans-Peter Marshall, and Jodi Mead
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-451, https://doi.org/10.5194/hess-2020-451, 2020
Manuscript not accepted for further review
Cited articles
A2 Photonic WISe,
https://a2photonicsensors.com/wise-sensor-liquid-water-content-snow/ (last access: 15 October 2022),
2021. a
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and
Dozier, J.: Mountain Hydrology of the Western United States, Water
Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006. a
Balzter, H.: Forest Mapping and Monitoring with Interferometric Synthetic
Aperture Radar (InSAR), Prog. Phys. Geogr., 25, 159–177, https://doi.org/10.1177/030913330102500201, 2001. a
Bekaert, D., Walters, R., Wright, T., Hooper, A., and Parker, D.: Statistical
Comparison of InSAR Tropospheric Correction Techniques, Remote Sens.
Environ., 170, 40–47, https://doi.org/10.1016/j.rse.2015.08.035, 2015. a
Bekaert, D. P., Jones, C. E., An, K., and Huang, M.-H.: Exploiting UAVSAR
for a Comprehensive Analysis of Subsidence in the Sacramento Delta,
Remote Sensing of Environment, 220, 124–134,
https://doi.org/10.1016/j.rse.2018.10.023, 2018. a
Bonnell, R., McGrath, D., Williams, K., Webb, R., Fassnacht, S. R., and
Marshall, H.-P.: Spatiotemporal Variations in Liquid Water Content in
a Seasonal Snowpack: Implications for Radar Remote Sensing,
Remote Sensing, 13, 4223, https://doi.org/10.3390/rs13214223, 2021. a, b
Bradford, J. H., Clement, W. P., and Barrash, W.: Estimating Porosity with
Ground-Penetrating Radar Reflection Tomography: A Controlled 3-D
Experiment at the Boise Hydrogeophysical Research Site, Water Resour.
Res., 45, W00D26, https://doi.org/10.1029/2008WR006960, 2009. a, b
Colesanti, C., Ferretti, A., Prati, C., and Rocca, F.: Monitoring Landslides
and Tectonic Motions with the Permanent Scatterers Technique, Eng.
Geol., 68, 3–14, https://doi.org/10.1016/S0013-7952(02)00195-3, 2003. a
Conde, V., Nico, G., Mateus, P., Catalão, J., Kontu, A., and Gritsevich,
M.: On The Estimation of Temporal Changes of Snow Water
Equivalent by Spaceborne Sar Interferometry: A New Application for
the Sentinel-1 Mission, J. Hydrol. Hydromech., 67,
93–100, https://doi.org/10.2478/johh-2018-0003, 2019. a
Conger, S. M. and McClung, D. M.: Comparison of Density Cutters for Snow
Profile Observations, J. Glaciol., 55, 163–169,
https://doi.org/10.3189/002214309788609038, 2009. a
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann,
K. J., Painter, T. H., Hiemstra, C. A., Gelvin, A., Uhlmann, Z., Spaete, L.,
Glenn, N. F., and Lundquist, J. D.: Comparing Aerial Lidar Observations
With Terrestrial Lidar and Snow-Probe Transects From NASA's 2017
SnowEx Campaign, Water Resour. Res., 55, 6285–6294,
https://doi.org/10.1029/2018WR024533, 2019. a
Danklmayer, A., Doring, B., Schwerdt, M., and Chandra, M.: Assessment of
Atmospheric Propagation Effects in SAR Images, IEEE T.
Geosci. Remote, 47, 3507–3518,
https://doi.org/10.1109/TGRS.2009.2022271, 2009. a
Deeb, E. J., Forster, R. R., and Kane, D. L.: Monitoring Snowpack Evolution
Using Interferometric Synthetic Aperture Radar on the North Slope of
Alaska, USA, Int. J. Remote Sens., 32, 3985–4003,
https://doi.org/10.1080/01431161003801351, 2011. a, b, c
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Fractal Distribution of
Snow Depth from Lidar Data, J. Hydrometeorol., 7, 285–297,
https://doi.org/10.1175/JHM487.1, 2006. a
Derksen, C., Walker, A., LeDrew, E., and Goodison, B.: Time-Series Analysis of
Passive-Microwave-Derived Central North American Snow Water Equivalent
Imagery, Ann. Glaciol., 34, 1–7, https://doi.org/10.3189/172756402781817815,
2002. a
Dozier, J., Painter, T. H., Rittger, K., and Frew, J. E.: Time–Space
Continuity of Daily Maps of Fractional Snow Cover and Albedo from MODIS,
Adv. Water Resour., 31, 1515–1526,
https://doi.org/10.1016/j.advwatres.2008.08.011, 2008. a
Durand, M., Barros, A., Dozier, J., Adler, R., Cooley, S., Entekhabi, D.,
Forman, B. A., Konings, A. G., Kustas, W. P., Lundquist, J. D., Pavelsky,
T. M., Rodell, M., and Steele-Dunne, S.: Achieving Breakthroughs in
Global Hydrologic Science by Unlocking the Power of
Multisensor, Multidisciplinary Earth Observations, AGU Adv., 2,
e2021AV000455, https://doi.org/10.1029/2021AV000455, 2021. a
Eiriksson, D., Whitson, M., Luce, C. H., Marshall, H. P., Bradford, J., Benner,
S. G., Black, T., Hetrick, H., and McNamara, J. P.: An Evaluation of the
Hydrologic Relevance of Lateral Flow in Snow at Hillslope and Catchment
Scales: LATERAL FLOW IN SNOW, Hydrol. Process., 27, 640–654,
https://doi.org/10.1002/hyp.9666, 2013. a
Eppler, J., Rabus, B., and Morse, P.: Snow Water Equivalent Change Mapping from
Slope-Correlated Synthetic Aperture Radar Interferometry (InSAR) Phase
Variations, The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022,
2022. a, b, c
Evans, S. L., Flores, A. N., Heilig, A., Kohn, M. J., Marshall, H.-P., and
McNamara, J. P.: Isotopic Evidence for Lateral Flow and Diffusive Transport,
but Not Sublimation, in a Sloped Seasonal Snowpack, Idaho, USA,
Geophys. Res. Lett., 43, 3298–3306, https://doi.org/10.1002/2015GL067605,
2016. a
Ferretti, A., Prati, C., and Rocca, F.: Permanent Scatterers in SAR
Interferometry, IEEE T. Geosci. Remote, 39,
8–20, https://doi.org/10.1109/36.898661, 2001. a
Foster, J. L., Sun, C., Walker, J. P., Kelly, R., Chang, A., Dong, J., and
Powell, H.: Quantifying the Uncertainty in Passive Microwave Snow Water
Equivalent Observations, Remote Sens. Environ., 94, 187–203,
https://doi.org/10.1016/j.rse.2004.09.012, 2005. a
Funning, G. J., Parsons, B., Wright, T. J., Jackson, J. A., and Fielding,
E. J.: Surface Displacements and Source Parameters of the 2003 Bam
(Iran) Earthquake from Envisat Advanced Synthetic Aperture Radar
Imagery, J. Geophys. Res.-Sol. Ea., 110, B09406,
https://doi.org/10.1029/2004JB003338, 2005. a
Goldstein, R. M. and Zebker, H. A.: Interferometric Radar Measurement of Ocean
Surface Currents, Nature, 328, 707–709, https://doi.org/10.1038/328707a0, 1987. a
Goldstein, R. M., Zebker, H. A., and Werner, C. L.: Satellite Radar
Interferometry: Two-dimensional Phase Unwrapping, Radio Sci., 23,
713–720, https://doi.org/10.1029/RS023i004p00713, 1988. a
Gubler, H. and Hiller, M.: The Use of Microwave FMCW Radar in Snow and
Avalanche Research, Cold Reg. Sci. Technol., 9, 109–119,
https://doi.org/10.1016/0165-232X(84)90003-X, 1984. a
Guneriussen, T., Hogda, K., Johnsen, H., and Lauknes, I.: InSAR for
Estimation of Changes in Snow Water Equivalent of Dry Snow, IEEE T.
Geosci. Remote, 39, 2101–2108, https://doi.org/10.1109/36.957273,
2001. a, b, c, d
Harpold, A., Molotch, N. P., Musselman, K. N., Bales, R. C., Kirchner, P. B.,
Litvak, M., and Brooks, P. D.: Soil Moisture Response to Snowmelt Timing in
Mixed-Conifer Subalpine Forests, Hydrol. Process., 29, 2782–2798,
https://doi.org/10.1002/hyp.10400, 2015. a
Heilig, A., Mitterer, C., Schmid, L., Wever, N., Schweizer, J., Marshall,
H.-P., and Eisen, O.: Seasonal and Diurnal Cycles of Liquid Water in
Snow – Measurements and Modeling, J. Geophys.
Res.-Earth, 120, 2139–2154, https://doi.org/10.1002/2015JF003593, 2015. a
Hensley, S., Wheeler, K., Sadowy, G., Jones, C., Shaffer, S., Zebker, H.,
Miller, T., Heavey, B., Chuang, E., Chao, R., Vines, K., Nishimoto, K.,
Prater, J., Carrico, B., Chamberlain, N., Shimada, J., Simard, M., Chapman,
B., Muellerschoen, R., Le, C., Michel, T., Hamilton, G., Robison, D.,
Neumann, G., Meyer, R., Smith, P., Granger, J., Rosen, P., Flower, D., and
Smith, R.: The UAVSAR Instrument: Description and First Results, in:
2008 IEEE Radar Conference,IEEE, Rome, Italy, 1–6,
https://doi.org/10.1109/RADAR.2008.4720722, 2008. a, b
Holbrook, W. S., Miller, S. N., and Provart, M. A.: Estimating Snow Water
Equivalent over Long Mountain Transects Using Snowmobile-Mounted
Ground-Penetrating Radar, Geophysics, 81, WA183–WA193,
https://doi.org/10.1190/geo2015-0121.1, 2016. a
Johnson, M. and Sandusky, M.: SnowEx/snowex_db: SnowEx Hackweek 2022 release (Version hackweek2022), Zenodo [code], https://doi.org/10.5281/zenodo.7618107, 2023. a, b
Keskinen, Z., Tarricone, J., Adebisi, N., and Marshall, H. P.: SnowEx/uavsar_pytools: Slant Range Image Conversion (v0.7.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.6578192, 2022. a, b
King, J., Derksen, C., Toose, P., Langlois, A., Larsen, C., Lemmetyinen, J.,
Marsh, P., Montpetit, B., Roy, A., Rutter, N., and Sturm, M.: The Influence
of Snow Microstructure on Dual-Frequency Radar Measurements in a Tundra
Environment, Remote Sens. Enviro., 215, 242–254,
https://doi.org/10.1016/j.rse.2018.05.028, 2018. a
Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood,
E. F.: Inroads of Remote Sensing into Hydrologic Science during the WRR
Era, Water Resour. Res., 51, 7309–7342, https://doi.org/10.1002/2015WR017616,
2015. a
Lewis, G., Osterberg, E., Hawley, R., Whitmore, B., Marshall, H. P., and Box, J.: Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar, The Cryosphere, 11, 773–788, https://doi.org/10.5194/tc-11-773-2017, 2017. a
Li, D., Wrzesien, M. L., Durand, M., Adam, J., and Lettenmaier, D. P.: How Much
Runoff Originates as Snow in the Western United States, and How Will That
Change in the Future?: Western U.S. Snowmelt-Derived Runoff,
Geophys. Res. Lett., 44, 6163–6172, https://doi.org/10.1002/2017GL073551,
2017. a
Li, H., Wang, Z., He, G., and Man, W.: Estimating Snow Depth and Snow
Water Equivalence Using Repeat-Pass Interferometric SAR in the Northern
Piedmont Region of the Tianshan Mountains, J. Sensors, 2017,
1–17, https://doi.org/10.1155/2017/8739598, 2017. a
Li, Z., Fielding, E. J., Cross, P., and Muller, J.-P.: Interferometric
Synthetic Aperture Radar Atmospheric Correction: GPS Topography-Dependent
Turbulence Model: INTEGRATION OF GPS AND INSAR, J. Geophys.
Res.-Sol. Ea., 111, B02404, https://doi.org/10.1029/2005JB003711, 2006. a
Li, Z., Fielding, E. J., Cross, P., and Preusker, R.: Advanced InSAR
Atmospheric Correction: MERIS/MODIS Combination and Stacked Water
Vapour Models, Int. J. Remote Sens., 30, 3343–3363,
https://doi.org/10.1080/01431160802562172, 2009. a
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L.,
Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W.,
Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J.,
and De Lannoy, G. J. M.: Snow Depth Variability in the Northern
Hemisphere Mountains Observed from Space, Nat. Commun., 10, 4629,
https://doi.org/10.1038/s41467-019-12566-y, 2019. a
Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.: Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps, The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, 2022. a
Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling System
(SnowModel), J. Hydrometeorol., 7, 1259–1276,
https://doi.org/10.1175/JHM548.1, 2006. a
Liu, S., Hanssen, R., and Mika, Á.: On the Value of High-Resolution Weather
Models for Atmospheric Mitigation in SAR Interferometry, in: 2009 IEEE
International Geoscience and Remote Sensing Symposium, 2,
II–749–II–752, https://doi.org/10.1109/IGARSS.2009.5418199, 2009. a
Lund, J., Forster, R. R., Rupper, S. B., Deeb, E. J., Marshall, H. P., Hashmi,
M. Z., and Burgess, E.: Mapping Snowmelt Progression in the Upper Indus
Basin With Synthetic Aperture Radar, Front. Earth Sci., 7, 318,
https://doi.org/10.3389/feart.2019.00318, 2020. a
Marks, D., Domingo, J., Susong, D., Link, T., and Garen, D.: A Spatially
Distributed Energy Balance Snowmelt Model for Application in Mountain Basins,
Hydrol. Process., 13, 1935–1959,
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1935::AID-HYP868>3.0.CO;2-C,
1999. a
Marshall, H., Vuyovich, C., Hiemstra, C., Brucker, L., Elder, K., Deems, J.,
and Newlin, J.: NASA SnowEx 2020 Experiment Plan, Tech. rep.,
https://snow.nasa.gov/sites/default/files/NASA_SnowEx_Experiment_Plan_v15_draft.pdf (last access: 5 February 2023),
2019. a
Marshall, H., Deeb, E., Forster, R., Vuyovich, C., Elder, K., Hiemstra, C., and
Lund, J.: L-Band InSAR Depth Retrieval During the NASA SnowEx 2020
Campaign: Grand Mesa, Colorado, in: 2021 IEEE International
Geoscience and Remote Sensing Symposium IGARSS, 625–627,
https://doi.org/10.1109/IGARSS47720.2021.9553852, 2021. a, b, c
Marshall, H.-P. and Koh, G.: FMCW Radars for Snow Research, Cold Reg.
Sci. Technol., 52, 118–131,
https://doi.org/10.1016/j.coldregions.2007.04.008, 2008. a
Marshall, H.-P., Koh, G., and Forster, R. R.: Estimating Alpine Snowpack
Properties Using FMCW Radar, Ann. Glaciol., 40, 157–162,
https://doi.org/10.3189/172756405781813500, 2005. a, b, c
McGrath, D., Sass, L., O'Neel, S., McNeil, C., Candela, S. G., Baker, E. H., and Marshall, H.-P.: Interannual snow accumulation variability on glaciers derived from repeat, spatially extensive ground-penetrating radar surveys, The Cryosphere, 12, 3617–3633, https://doi.org/10.5194/tc-12-3617-2018, 2018. a
McGrath, D., Webb, R., Shean, D., Bonnell, R., Marshall, H.-P., Painter, T. H.,
Molotch, N. P., Elder, K., Hiemstra, C., and Brucker, L.: Spatially
Extensive Ground-Penetrating Radar Snow Depth Observations During NASA's
2017 SnowEx Campaign: Comparison With In Situ, Airborne, and
Satellite Observations, Water Resour. Res., 55, 10026–10036,
https://doi.org/10.1029/2019WR024907, 2019. a, b
Meyer, F. J.: Performance Requirements for Ionospheric Correction of
Low-Frequency SAR Data, IEEE T. Geosci. Remote, 49, 3694–3702, https://doi.org/10.1109/TGRS.2011.2146786, 2011. a
Michaelides, R. J., Chen, R. H., Zhao, Y., Schaefer, K., Parsekian, A. D.,
Sullivan, T., Moghaddam, M., Zebker, H. A., Liu, L., Xu, X., and Chen, J.:
Permafrost Dynamics Observatory – Part I: Postprocessing
and Calibration Methods of UAVSAR L-Band InSAR Data for
Seasonal Subsidence Estimation, Earth Space Sci., 8, e2020EA001630,
https://doi.org/10.1029/2020EA001630, 2021. a
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz,
Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead:
Whither Water Management?, Science, 319, 573–574,
https://doi.org/10.1126/science.1151915, 2008. a
Molotch, N. P., Brooks, P. D., Burns, S. P., Litvak, M., Monson, R. K.,
McConnell, J. R., and Musselman, K.: Ecohydrological Controls on Snowmelt
Partitioning in Mixed-Conifer Sub-Alpine Forests, Ecohydrology, 2, 129–142,
https://doi.org/10.1002/eco.48, 2009. a
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic
Declines in Snowpack in the Western US, npj Climate and Atmospheric
Science, 1, 2, https://doi.org/10.1038/s41612-018-0012-1, 2018. a
Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data, Remote Sens., 4, 2753–2767, https://doi.org/10.3390/rs4092753, 2012. a
Musselman, K. N., Molotch, N. P., and Brooks, P. D.: Effects of Vegetation on
Snow Accumulation and Ablation in a Mid-Latitude Sub-Alpine Forest,
Hydrol. Process., 22, 2767–2776, https://doi.org/10.1002/hyp.7050, 2008. a, b
Nagler, T. and Rott, H.: Retrieval of Wet Snow by Means of Multitemporal
SAR Data, IEEE T. Geosci. Remote, 38,
754–765, https://doi.org/10.1109/36.842004, 2000. a
Nagler, T., Rott, H., Ripper, E., Bippus, G., and Hetzenecker, M.: Advancements
for Snowmelt Monitoring by Means of Sentinel-1 SAR, Remote
Sensing, 8, 348, https://doi.org/10.3390/rs8040348, 2016. a
Nagler, T., Rott, H., Scheiblauer, S., Libert, L., Mölg, N., Horn, R.,
Fischer, J., Keller, M., Moreira, A., and Kubanek, J.: Airborne
Experiment on Insar Snow Mass Retrieval in Alpine Environment,
in: IGARSS 2022 – 2022 IEEE International Geoscience and Remote
Sensing Symposium, 4549–4552, https://doi.org/10.1109/IGARSS46834.2022.9883809,
2022. a
NASA/JPL-Caltech: UAVSAR Data Search, NASA/JPL-Caltech [data set], https://uavsar.jpl.nasa.gov/cgi-bin/data.pl, last access: 6 March 2023. a
Nolin, A., Dozier, J., and Mertes, L.: Mapping Alpine Snow Using a Spectral
Mixture Modeling Technique, Ann. Glaciol., 17, 121–124,
https://doi.org/10.3189/S0260305500012702, 1993. a
OpenTopography: Jemez River Basin Snow-off LiDAR Survey, OpenTopography [data set],
https://doi.org/10.5069/G9RB72JV, 2012. a, b
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems,
J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann,
C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C.,
and Winstral, A.: The Airborne Snow Observatory: Fusion of Scanning
Lidar, Imaging Spectrometer, and Physically-Based Modeling for Mapping Snow
Water Equivalent and Snow Albedo, Remote Sens. Environ., 184,
139–152, https://doi.org/10.1016/j.rse.2016.06.018, 2016. a
Poland, M. P. and Zebker, H. A.: Volcano Geodesy Using InSAR in 2020: The
Past and next Decades, B. Volcanol., 84, 27,
https://doi.org/10.1007/s00445-022-01531-1, 2022. a
Proksch, M., Rutter, N., Fierz, C., and Schneebeli, M.: Intercomparison of snow density measurements: bias, precision, and vertical resolution, The Cryosphere, 10, 371–384, https://doi.org/10.5194/tc-10-371-2016, 2016. a
Raleigh, M. S. and Small, E. E.: Snowpack Density Modeling Is the Primary
Source of Uncertainty When Mapping Basin-Wide SWE with Lidar:
Uncertainties in SWE Mapping With Lidar, Geophys. Res.
Lett., 44, 3700–3709, https://doi.org/10.1002/2016GL071999, 2017. a
Rango, A., Chang, A. T. C., and Foster, J. L.: The Utilization of
Spaceborne Microwave Radiometers for Monitoring Snowpack Properties,
Hydrol. Res., 10, 25–40, https://doi.org/10.2166/nh.1979.0003, 1979. a
Rittger, K., Krock, M., Kleiber, W., Bair, E. H., Brodzik, M. J., Stephenson,
T. R., Rajagopalan, B., Bormann, K. J., and Painter, T. H.: Multi-Sensor
Fusion Using Random Forests for Daily Fractional Snow Cover at 30 m, Remote
Sens. Environ., 264, 112608, https://doi.org/10.1016/j.rse.2021.112608, 2021. a
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D.,
Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel,
B., Krieger, G., Zink, M., and Moreira, A.: Generation and Performance
Assessment of the Global TanDEM-X Digital Elevation Model, ISPRS J. Photogramm. Remote, 132, 119–139,
https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017. a
Rodríguez, E., Morris, C. S., and Belz, J. E.: A Global Assessment of
the SRTM Performance, Photogramm. Eng. Remote Sens., 72,
249–260, https://doi.org/10.14358/PERS.72.3.249, 2006. a
Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S., Rodriguez, E., and
Goldstein, R.: Synthetic Aperture Radar Interferometry, P.
IEEE, 88, 333–382, https://doi.org/10.1109/5.838084, 2000. a
Rosen, P., Hensley, S., Wheeler, K., Sadowy, G., Miller, T., Shaffer, S.,
Muellerschoen, R., Jones, C., Zebker, H., and Madsen, S.: UAVSAR: A New
NASA Airborne SAR System for Science and Technology Research, in:
2006 IEEE Conference on Radar, 22–29, IEEE, Syracuse, NY,
USA, https://doi.org/10.1109/RADAR.2006.1631770, 2006. a
Rosen, P., Hensley, S., Shaffer, S., Edelstein, W., Kim, Y., Kumar, R., Misra,
T., Bhan, R., and Sagi, R.: The NASA-ISRO SAR (NISAR) Mission
Dual-Band Radar Instrument Preliminary Design, in: 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 3832–3835,
https://doi.org/10.1109/IGARSS.2017.8127836, 2017. a
Rott, H., Yueh, S. H., Cline, D. W., Duguay, C., Essery, R., Haas, C.,
Hélière, F., Kern, M., Macelloni, G., Malnes, E., Nagler, T.,
Pulliainen, J., Rebhan, H., and Thompson, A.: Cold Regions Hydrology
High-Resolution Observatory for Snow and Cold Land Processes,
Proc. IEEE, 98, 752–765, https://doi.org/10.1109/JPROC.2009.2038947,
2010. a
Rutter, N., Sandells, M. J., Derksen, C., King, J., Toose, P., Wake, L., Watts, T., Essery, R., Roy, A., Royer, A., Marsh, P., Larsen, C., and Sturm, M.: Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals, The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, 2019. a
Ryan, W. A., Doesken, N. J., and Fassnacht, S. R.: Evaluation of Ultrasonic
Snow Depth Sensors for U.S. Snow Measurements, J.
Atmos. Ocean. Tech., 25, 667–684,
https://doi.org/10.1175/2007JTECHA947.1, 2008. a
Sandmeier, K.-J.: REFLEXW,
https://www.sandmeier-geo.de/reflexw.html (last access: 5 March 2022), 2022. a
Selkowitz, D. J., Painter, T. H., Rittger, K. E., Schmidt, G., and Forster, R.: The USGS Landsat Snow Covered Area Products: Methods and Preliminary Validation.” Automated Approaches for Snow and Ice Cover Monitoring Using Optical Remote Sensing, edited by: Selkowitz, D., Salt Lake City, UT, The University of Utah, 76–119, https://www.researchgate.net/publication/331024289_The_USGS_Lands at_Snow_Covered_Area_Products_Methods_and_Preliminary_Validation_ (last access: 16 March 2020), 2017. a, b
Shi, J. and Dozier, J.: Estimation of Snow Water Equivalence Using
SIR-C/X-SAR. II. Inferring Snow Depth and Particle Size, IEEE
T. Geosci. Remote, 38, 2475–2488,
https://doi.org/10.1109/36.885196, 2000. a
Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S.,
Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D., Collins,
W. D., and Kaatz, L.: A Low-to-No Snow Future and Its Impacts on Water
Resources in the Western United States, Nat. Rev. Earth
Environ., 2, 800–819, https://doi.org/10.1038/s43017-021-00219-y, 2021. a
Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes in Snowmelt
Runoff Timing in Western North America under a “Business as
Usual” Climate Change Scenario, Clim. Change, 62, 217–232,
https://doi.org/10.1023/B:CLIM.0000013702.22656.e8, 2004. a
Stillinger, T., Rittger, K., Raleigh, M. S., Michell, A., Davis, R. E., and Bair, E. H.: Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets, The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023, 2023. a
Sun, G., Ranson, K., Kharuk, V., and Kovacs, K.: Validation of Surface Height
from Shuttle Radar Topography Mission Using Shuttle Laser Altimeter, Remote
Sens. Environ., 88, 401–411, https://doi.org/10.1016/j.rse.2003.09.001, 2003. a
Tarricone, J.: Estimating snow accumulation and ablation with L-band InSAR: Code and data for analysis
and figure creation (0.0.4), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7754560, 2023. a, b
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic, Meteorologic,
and Canopy Controls on the Scaling Characteristics of the Spatial
Distribution of Snow Depth Fields, Water Resour. Res., 43, W07409,
https://doi.org/10.1029/2006WR005317, 2007. a
Tsai, Y.-L. S., Dietz, A., Oppelt, N., and Kuenzer, C.: Remote Sensing of
Snow Cover Using Spaceborne SAR: A Review, Remote Sens., 11, 1456,
https://doi.org/10.3390/rs11121456, 2019. a
Tsang, L., Durand, M., Derksen, C., Barros, A. P., Kang, D.-H., Lievens, H., Marshall, H.-P., Zhu, J., Johnson, J., King, J., Lemmetyinen, J., Sandells, M., Rutter, N., Siqueira, P., Nolin, A., Osmanoglu, B., Vuyovich, C., Kim, E., Taylor, D., Merkouriadi, I., Brucker, L., Navari, M., Dumont, M., Kelly, R., Kim, R. S., Liao, T.-H., Borah, F., and Xu, X.: Review article: Global monitoring of snow water equivalent using high-frequency radar remote sensing, The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, 2022. a
Ulaby, F. T., Stiles, W. H., and Abdelrazik, M.: Snowcover Influence on
Backscattering from Terrain, IEEE T. Geosci.
Remote, GE-22, 126–133, https://doi.org/10.1109/TGRS.1984.350604, 1984. a
U.S. Geological Survey, E. R. O. and Center, S.: Collection-1 Landsat Level-3
Fractional Snow Covered Area (FSCA) Science Product, U.S. Geological Survey [data set],
https://doi.org/10.5066/F7XK8DS5, 2018. a, b
Vuyovich, C. M., Jacobs, J. M., and Daly, S. F.: Comparison of Passive
Microwave and Modeled Estimates of Total Watershed SWE in the Continental
United States, Water Resour. Re., 50, 9088–9102,
https://doi.org/10.1002/2013WR014734, 2014. a
Webb, R.: SnowEx20 Jemez UNM 800 MHz MALA GPR, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/H38Q5FTBPZ8K, 2021. a, b
Webb, R. W.: Using Ground Penetrating Radar to Assess the Variability of Snow
Water Equivalent and Melt in a Mixed Canopy Forest, Northern Colorado,
Front. Earth Sci., 11, 482–495, https://doi.org/10.1007/s11707-017-0645-0,
2017. a
Webb, R. W., Jennings, K. S., Fend, M., and Molotch, N. P.: Combining
Ground-Penetrating Radar With Terrestrial LiDAR Scanning to
Estimate the Spatial Distribution of Liquid Water Content in
Seasonal Snowpacks, Water Resour. Res., 54, 10339–10349,
https://doi.org/10.1029/2018WR022680, 2018. a, b
Webb, R. W., Jennings, K., Finsterle, S., and Fassnacht, S. R.: Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons, The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, 2021a. a
Webb, R. W., Marziliano, A., McGrath, D., Bonnell, R., Meehan, T. G., Vuyovich,
C., and Marshall, H.-P.: In Situ Determination of Dry and Wet Snow
Permittivity: Improving Equations for Low Frequency Radar
Applications, Remote Sens., 13, 4617, https://doi.org/10.3390/rs13224617,
2021b.
a, b, c
Western Regional Climate Center (WRCC): Valles Caldera National Preserve Climate Stations, WRCC [data set], https://wrcc.dri.edu/vallescaldera/, last access: 8 July 2022. a
Yu, C., Li, Z., and Penna, N. T.: Interferometric Synthetic Aperture Radar
Atmospheric Correction Using a GPS-based Iterative Tropospheric
Decomposition Model, Remote Sens. Environ., 204, 109–121,
https://doi.org/10.1016/j.rse.2017.10.038, 2018. a
Yueh, S. H., Dinardo, S. J., Akgiray, A., West, R., Cline, D. W., and Elder,
K.: Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial
Snow Cover, IEEE T. Geosci. Remote, 47,
3347–3364, https://doi.org/10.1109/TGRS.2009.2022945, 2009. a
Yueh, S. H., Shah, R., Xu, X., Stiles, B., and Bosch-Lluis, X.: A Satellite
Synthetic Aperture Radar Concept Using P-Band Signals of Opportunity,
IEEE J. Sel. Top. Appl. Earth Obs., 14, 2796–2816, https://doi.org/10.1109/JSTARS.2021.3059242, 2021. a
Zebker, H. A. and Goldstein, R. M.: Topographic Mapping from Interferometric
Synthetic Aperture Radar Observations, J. Geophys. Res.-Sol.
Ea., 91, 4993–4999, https://doi.org/10.1029/JB091iB05p04993, 1986. a
Zebker, H. A., Rosen, P. A., and Hensley, S.: Atmospheric Effects in
Interferometric Synthetic Aperture Radar Surface Deformation and Topographic
Maps, J. Geophys. Res.-Sol. Ea., 102, 7547–7563,
https://doi.org/10.1029/96JB03804, 1997. a, b
Zhu, J., Tan, S., Tsang, L., Kang, D.-H., and Kim, E.: Snow Water Equivalent
Retrieval Using Active and Passive Microwave Observations, Water
Resour. Res., 57, e2020WR027563, https://doi.org/10.1029/2020WR027563, 2021. a
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Mountain snowmelt provides water for billions of people across the globe. Despite its...