Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1601-2023
https://doi.org/10.5194/tc-17-1601-2023
Brief communication
 | 
12 Apr 2023
Brief communication |  | 12 Apr 2023

Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements

Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani

Related authors

Brief communication: On the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024,https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Induced Electromagnetic prospecting for the characterization of the European southernmost glacier: the Calderone Glacier, Apennines, Italy
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190,https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen ground hydrology
Massive mobilization of toxic elements from an intact rock glacier in the central Eastern Alps
Hoda Moradi, Gerhard Furrer, Michael Margreth, David Mair, and Christoph Wanner
The Cryosphere, 18, 5153–5171, https://doi.org/10.5194/tc-18-5153-2024,https://doi.org/10.5194/tc-18-5153-2024, 2024
Short summary
Short-term cooling, drying, and deceleration of an ice-rich rock glacier
Alexander Bast, Robert Kenner, and Marcia Phillips
The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024,https://doi.org/10.5194/tc-18-3141-2024, 2024
Short summary
Future permafrost degradation under climate change in a headwater catchment of Central Siberia: quantitative assessment with a mechanistic modelling approach
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
EGUsphere, https://doi.org/10.5194/egusphere-2023-3074,https://doi.org/10.5194/egusphere-2023-3074, 2024
Short summary
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 1: Geophysics-based estimates from three different regions
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022,https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Impact of lateral groundwater flow on hydrothermal conditions of the active layer in a high-Arctic hillslope setting
Alexandra Hamm and Andrew Frampton
The Cryosphere, 15, 4853–4871, https://doi.org/10.5194/tc-15-4853-2021,https://doi.org/10.5194/tc-15-4853-2021, 2021
Short summary

Cited articles

Binley, A.: Tools and Techniques: Electrical Methods, in: Treatise on Geophysics, edited by: Schubert, G. (editor-in chief), 2nd edn., vol 11, Elsevier, Oxford, 233–259, https://doi.org/10.1016/B978-0-444-53802-4.00192-5, 2015. 
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling, Comput. Geosci., 137, 104423, https://doi.org/10.1016/j.cageo.2020.104423, 2020. 
Carturan L., Zuecco, G., Seppi, R., Zanoner, T., Borga, M., Carton, A., and Dalla Fontana, D.: Catchment scale permafrost mapping using spring water characteristics, Permafrost Periglac., 27, 253–270, https://doi.org/10.1002/ppp.1875, 2016. 
Cassiani, G., Godio, A., Stocco, S., Villa, A., Deiana, R., Frattini, P., and Rossi, M.: Monitoring the hydrologic behavior of a mountain slope via time-lapse electrical resistivity tomography, Near Surf. Geophys., 7, 475–486, https://doi.org/10.3997/1873-0604.2009013, 2009. 
Cassiani G., Binley A. M., and Ferre T. P. A.: Unsaturated zone processes, in: Applied Hydrogeophysics, edited by: Vereecken, H., Binley, A., Cassiani, G., Revil, A., and Titov, K., 75–116, Springer Verlag, https://doi.org/10.1007/978-1-4020-4912-5_4, 2016. 
Download
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.