Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1601-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1601-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements
Department of Geosciences, University of Padova, Padua, Italy
Jacopo Boaga
Department of Geosciences, University of Padova, Padua, Italy
Alberto Carrera
Department of Agronomy, Food, Natural Resources, Animals and
Environment, University of Padova, Legnaro (PD), Italy
Giulia Zuecco
Department of Land, Environment, Agriculture and Forestry,
University of Padova, Legnaro (PD), Italy
Department of Chemical Sciences, University of Padova, Padua, Italy
Luca Carturan
Department of Land, Environment, Agriculture and Forestry,
University of Padova, Legnaro (PD), Italy
Matteo Zumiani
Servizio Geologico, Provincia Autonoma di Trento, Italy
Related authors
Luca Peruzzo, Ulrike Werban, Marco Pohle, Mirko Pavoni, Benjamin Mary, Giorgio Cassiani, Simona Consoli, and Daniela Vanella
EGUsphere, https://doi.org/10.5194/egusphere-2025-2117, https://doi.org/10.5194/egusphere-2025-2117, 2025
Short summary
Short summary
Both spatial and temporal information are important in agriculture. Information regarding the above-ground variables ever-increasing in density and precision. On the contrary, below-ground information lags behind and has been typically limited to time series. This study uses methods that map the subsurface spatial variability. A numerical simulations of above- and below water fluxes are then based on such spatial information and additional time-oriented datasets that are common in agriculture.
Ilaria Barone, Alexander Bast, Mirko Pavoni, Steven Javier Gaona Torres, and Jacopo Boaga
EGUsphere, https://doi.org/10.5194/egusphere-2025-962, https://doi.org/10.5194/egusphere-2025-962, 2025
Short summary
Short summary
Different geophysical methods such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW) were jointly used to characterize the internal structure of the Flüela rock glacier, Switzerland. We show that the MASW method can efficiently resolve an ice-rich layer even in presence of a supra-permafrost water flow, a situation when SRT may fail. Our results are corroborated by seismic synthetic modelling.
Mirko Pavoni, Luca Peruzzo, Jacopo Boaga, Alberto Carrera, Ilaria Barone, and Alexander Bast
EGUsphere, https://doi.org/10.5194/egusphere-2025-405, https://doi.org/10.5194/egusphere-2025-405, 2025
Short summary
Short summary
We propose an alternative electrode to perform Electrical Resistivity Tomography measurements in coarse blocky environments, such as rock glaciers. Compared to the traditional steel spike electrodes, which need to be hammered between the blocks, the proposed steel-net electrodes can be easily pushed between the builders by hand and then removed. Furthermore, the steel-net electrode weighs one-sixth of the steel spike, and is, therefore, easier to carry in challenging mountain environments.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190, https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted
Short summary
Short summary
The Ice Memory project aims to extract, analyze, and store ice cores from worldwide retreating glaciers. One of the selected sites is the last remaining ice body in the Apennines, the Calderone Glacier. To assess the most suitable drilling position, geophysical surveys were performed. Reliable ground penetrating radar measurements have been positively combined with a geophysical technique rarely applied in glacier environments, the Frequency Domain Electro-Magnetic prospection.
Luca Carturan, Alexander C. Ihle, Federico Cazorzi, Tiziana Lazzarina Zendrini, Fabrizio De Blasi, Giancarlo Dalla Fontana, Giuliano Dreossi, Daniela Festi, Bryan Mark, Klaus Dieter Oeggl, Roberto Seppi, Barbara Stenni, and Paolo Gabrielli
The Cryosphere, 19, 3443–3458, https://doi.org/10.5194/tc-19-3443-2025, https://doi.org/10.5194/tc-19-3443-2025, 2025
Short summary
Short summary
Paleoclimatic glacial archives in low-latitude mountains are increasingly affected by melt, causing heavy percolation and removing snow and firn accumulated across months, seasons, or even years. Here we present a proxy system model that explicitly accounts for melt in ice and firn cores. Compared to traditional annual layer counting, the model significantly improved the interpretation and annual dating of the Mt Ortles firn core, in the Italian Alps, which includes the very warm summer of 2003.
Luca Peruzzo, Ulrike Werban, Marco Pohle, Mirko Pavoni, Benjamin Mary, Giorgio Cassiani, Simona Consoli, and Daniela Vanella
EGUsphere, https://doi.org/10.5194/egusphere-2025-2117, https://doi.org/10.5194/egusphere-2025-2117, 2025
Short summary
Short summary
Both spatial and temporal information are important in agriculture. Information regarding the above-ground variables ever-increasing in density and precision. On the contrary, below-ground information lags behind and has been typically limited to time series. This study uses methods that map the subsurface spatial variability. A numerical simulations of above- and below water fluxes are then based on such spatial information and additional time-oriented datasets that are common in agriculture.
Ilaria Barone, Alexander Bast, Mirko Pavoni, Steven Javier Gaona Torres, and Jacopo Boaga
EGUsphere, https://doi.org/10.5194/egusphere-2025-962, https://doi.org/10.5194/egusphere-2025-962, 2025
Short summary
Short summary
Different geophysical methods such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW) were jointly used to characterize the internal structure of the Flüela rock glacier, Switzerland. We show that the MASW method can efficiently resolve an ice-rich layer even in presence of a supra-permafrost water flow, a situation when SRT may fail. Our results are corroborated by seismic synthetic modelling.
Mirko Pavoni, Luca Peruzzo, Jacopo Boaga, Alberto Carrera, Ilaria Barone, and Alexander Bast
EGUsphere, https://doi.org/10.5194/egusphere-2025-405, https://doi.org/10.5194/egusphere-2025-405, 2025
Short summary
Short summary
We propose an alternative electrode to perform Electrical Resistivity Tomography measurements in coarse blocky environments, such as rock glaciers. Compared to the traditional steel spike electrodes, which need to be hammered between the blocks, the proposed steel-net electrodes can be easily pushed between the builders by hand and then removed. Furthermore, the steel-net electrode weighs one-sixth of the steel spike, and is, therefore, easier to carry in challenging mountain environments.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, and Francesco Morari
SOIL, 10, 843–857, https://doi.org/10.5194/soil-10-843-2024, https://doi.org/10.5194/soil-10-843-2024, 2024
Short summary
Short summary
Soil compaction resulting from inappropriate agricultural practices affects soil ecological functions, decreasing the water-use efficiency of plants. Recent developments contributed to innovative sensing approaches aimed at safeguarding soil health. Here, we explored how the most used geophysical methods detect soil compaction. Results, validated with traditional characterization methods, show the pros and cons of non-invasive techniques and their ability to characterize compacted areas.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Luca Carturan, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Paolo Gabrielli, Volkmar Mair, Roberto Seppi, David Tonidandel, Thomas Zanoner, Tiziana Lazzarina Zendrini, and Giancarlo Dalla Fontana
Earth Syst. Sci. Data, 15, 4661–4688, https://doi.org/10.5194/essd-15-4661-2023, https://doi.org/10.5194/essd-15-4661-2023, 2023
Short summary
Short summary
This paper presents a new dataset of air, englacial, soil surface and rock wall temperatures collected between 2010 and 2016 on Mt Ortles, which is the highest summit of South Tyrol, Italy. Details are provided on instrument type and characteristics, field methods, and data quality control and assessment. The obtained data series are available through an open data repository. This is a rare dataset from a summit area lacking observations on permafrost and glaciers and their climatic response.
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023, https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190, https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted
Short summary
Short summary
The Ice Memory project aims to extract, analyze, and store ice cores from worldwide retreating glaciers. One of the selected sites is the last remaining ice body in the Apennines, the Calderone Glacier. To assess the most suitable drilling position, geophysical surveys were performed. Reliable ground penetrating radar measurements have been positively combined with a geophysical technique rarely applied in glacier environments, the Frequency Domain Electro-Magnetic prospection.
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
Cited articles
Binley, A.: Tools and Techniques: Electrical Methods, in: Treatise on Geophysics, edited by: Schubert, G.
(editor-in chief), 2nd edn., vol 11, Elsevier, Oxford, 233–259, https://doi.org/10.1016/B978-0-444-53802-4.00192-5,
2015.
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy,
an intuitive open source software for complex geoelectrical
inversion/modeling, Comput. Geosci., 137, 104423,
https://doi.org/10.1016/j.cageo.2020.104423, 2020.
Carturan L., Zuecco, G., Seppi, R., Zanoner, T., Borga, M., Carton, A., and
Dalla Fontana, D.: Catchment scale permafrost mapping using spring water
characteristics, Permafrost Periglac., 27, 253–270,
https://doi.org/10.1002/ppp.1875, 2016.
Cassiani, G., Godio, A., Stocco, S., Villa, A., Deiana, R., Frattini, P.,
and Rossi, M.: Monitoring the hydrologic behavior of a mountain slope via
time-lapse electrical resistivity tomography, Near Surf. Geophys.,
7, 475–486, https://doi.org/10.3997/1873-0604.2009013, 2009.
Cassiani G., Binley A. M., and Ferre T. P. A.: Unsaturated zone processes, in:
Applied Hydrogeophysics, edited by: Vereecken, H., Binley, A., Cassiani, G., Revil, A.,
and Titov, K., 75–116, Springer Verlag, https://doi.org/10.1007/978-1-4020-4912-5_4, 2016.
Chambers, J. E.: Bedrock detection beneath river terrace deposits using
three-dimensional electrical resistivity tomography, Geomorphology,
177, 17–25, https://doi.org/10.1016/j.geomorph.2012.03.034, 2012.
Giardino, J. R., Vitek, J. D., and Demorett, J. L.: A model of water
movement in rock glaciers and associated water characteristics, in:
Periglacial Geomorphology, Routledge, 159–184, https://doi.org/10.4324/9781003028901-7, 1992.
Harrington, J. S., Mozil, A., Hayashi, M., and Bentley, L. R.: Groundwater
flow and storage processes in an inactive rock glacier, Hydrol.
Process., 32, 3070–3088, https://doi.org/10.1002/hyp.13248, 2018.
Hartmann, A., Semenova, E., Weiler, M., and Blume, T.: Field observations of soil hydrological flow path evolution over 10 millennia, Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, 2020.
Hauck, C. and Kneisel, C.: Applied Geophysics in Periglacial Environments,
Cambridge University Press, ISBN 9780521889667, 2008.
Herring, T. and Lewkowicz, A. G.: A systematic evaluation of electrical
resistivity tomography for permafrost interface detection using forward
modeling, Permafrost Periglac., 33, 134–146,
https://doi.org/10.1002/ppp.2141, 2022.
Krainer, K., Mostler, W., and Spötl, C.: Discharge from active rock
glaciers, Austrian Alps: a stable isotope approach, Austrian J.
Earth Sc., 100, 102–112, 2007.
Maier, F., van Meerveld, I., and Weiler, M.: Long-term changes in runoff generation
mechanisms for two proglacial areas in the Swiss Alps II: Subsurface flow,
Water Resour. Res., 57, e2021WR030223, https://doi.org/10.1029/2021WR030223, 2021.
Mewes, B., Hilbich, C., Delaloye, R., and Hauck, C.: Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes, The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, 2017.
Pauritsch, M., Wagner, T., Winkler, G., and Birk, S.: Investigating
groundwater flow components in an Alpine relict rock glacier (Austria) using
a numerical model, Hydrogeol. J., 25, 371–383, 2017.
Pavoni, M.: MirkoJPavoni/Brief_Communication_Sadole_Rock_Glacier: ERT_datasets_time_lapse_survey_rock_glacier_Sadole (v0.1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7113054, 2022.
Pavoni, M., Carrera, A., and Boaga, J.: Improving the galvanic contact
resistance for geoelectrical measurements in debris areas: a case study,
Near Surf. Geophys., 20, 178–191, https://doi.org/10.1002/nsg.12192, 2022.
Phillips, M., Buchli, C., Weber, S., Boaga, J., Pavoni, M., and Bast, A.: Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost, The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, 2023.
RGIK: Towards standard guidelines for inventorying rock glaciers:
baseline concepts (version 4.2.2), IPA Action Group Rock glacier inventories
and kinematics, 13 pp., 2022.
Seppi, R., Carton, A., Zumiani, M., Dall' Amico, M., Zampedri, G., and Rigon,
R.: Inventory, distribution and topographic features of rock glaciers in the
southern region of the Eastern Italian Alps (Trentino), Geogr. Fis. Dinam.
Quat., 35, 185–197, https://doi.org/10.4461/GFDQ.2012.35.17, 2012.
Wagner, T., Pauritsch, M., and Winkler, G.: Impact of relict rock glaciers on
spring and stream flow of alpine watersheds: examples of the Niedere Tauern
Range, Eastern Alps (Austria), Aust. J. Earth Sci., 109, 84–98,
2016.
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
In the last decades, geochemical investigations at the springs of rock glaciers have been used...