Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-1053-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1053-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A sensor-agnostic albedo retrieval method for realistic sea ice surfaces: model and validation
Yingzhen Zhou
CORRESPONDING AUTHOR
Light and Life Laboratory, Department of Physics, Stevens Institute of Technology, Hoboken, NJ 07307, USA
Wei Li
Light and Life Laboratory, Department of Physics, Stevens Institute of Technology, Hoboken, NJ 07307, USA
Nan Chen
Light and Life Laboratory, Department of Physics, Stevens Institute of Technology, Hoboken, NJ 07307, USA
Yongzhen Fan
Cooperative Institute for Satellite Earth System Studies (CISESS),
Earth System Science Interdisciplinary Center (ESSIC),
University of Maryland, College Park, MD 20740, USA
Knut Stamnes
Light and Life Laboratory, Department of Physics, Stevens Institute of Technology, Hoboken, NJ 07307, USA
Related authors
No articles found.
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024, https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Short summary
We analyze simulated polarization observations over snow to investigate the capabilities of remote sensing to determine surface and atmospheric properties in snow-covered regions. Polarization measurements are demonstrated to aid in the determination of snow grain shape, ice crystal roughness, and the vertical distribution of impurities in the snow–atmosphere system, data that are critical for estimating snow albedo for use in climate models.
Related subject area
Discipline: Sea ice | Subject: Energy Balance Obs/Modelling
Understanding model spread in sea ice volume by attribution of model differences in seasonal ice growth and melt
On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic
New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements
Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket
Alex West, Edward Blockley, and Matthew Collins
The Cryosphere, 16, 4013–4032, https://doi.org/10.5194/tc-16-4013-2022, https://doi.org/10.5194/tc-16-4013-2022, 2022
Short summary
Short summary
In this study we explore a method of examining model differences in ice volume by looking at the seasonal ice growth and melt. We use simple physical relationships to judge how model differences in key variables affect ice growth and melt and apply these to three case study models with ice volume ranging from very thin to very thick. Results suggest that differences in snow and melt pond cover in early summer are most important in causing the sea ice differences for these models.
Einar Ólason, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, https://doi.org/10.5194/tc-15-1053-2021, 2021
Short summary
Short summary
We analyse the fractal properties observed in the pattern of the long, narrow openings that form in Arctic sea ice known as leads. We use statistical tools to explore the fractal properties of the lead fraction observed in satellite data and show that our sea-ice model neXtSIM displays the same behaviour. Building on this result we then show that the pattern of heat loss from ocean to atmosphere in the model displays similar fractal properties, stemming from the fractal properties of the leads.
Christian Katlein, Lovro Valcic, Simon Lambert-Girard, and Mario Hoppmann
The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, https://doi.org/10.5194/tc-15-183-2021, 2021
Short summary
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.
Donald K. Perovich
The Cryosphere, 12, 2159–2165, https://doi.org/10.5194/tc-12-2159-2018, https://doi.org/10.5194/tc-12-2159-2018, 2018
Short summary
Short summary
The balance of longwave and shortwave radiation plays a central role in the summer melt of Arctic sea ice. It is governed by clouds and surface albedo. The basic question is what causes more melting, sunny skies or cloudy skies. It depends on the albedo of the ice surface. For snow-covered or bare ice, sunny skies always result in less radiative heat input. In contrast, the open ocean always has, and melt ponds usually have, more radiative input under sunny skies than cloudy skies.
Cited articles
An, Y., Meng, X., Zhao, L., Li, Z., Wang, S., Shang, L., Chen, H., Lyu, S., Li,
G., and Ma, Y.: Performance of GLASS and MODIS Satellite Albedo
Products in Diagnosing Albedo Variations during Different Time
Scales and Special Weather Conditions in the Tibetan Plateau,
Remote Sensing, 12, 2456, https://doi.org/10.3390/rs12152456, 2020. a, b
Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle,
E. P.: AFGL Atmospheric Constituent Profiles (0.120 km), https://apps.dtic.mil/sti/citations/ADA175173 (last access: 18 February 2023) 1986. a
Barrientos Velasco, C., Deneke, H., and Macke, A.: Spatial and Temporal
Variability of Broadband Solar Irradiance during POLARSTERN Cruise
PS106/1 Ice Floe Camp (June 4th–16th 2017), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.896710, 2018. a
Braakmann-Folgmann, A. and Donlon, C.: Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network, The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, 2019. a
Brandt, R. E., Warren, S. G., Worby, A. P., and Grenfell, T. C.: Surface
Albedo of the Antarctic Sea Ice Zone, J. Climate, 18,
3606–3622, https://doi.org/10.1175/JCLI3489.1, 2005. a
Brochu, E., Cora, V., and Freitas, N.: A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to
Active User Modeling and Hierarchical Reinforcement Learning, CoRR, ArXiv [preprint],
https://doi.org/10.48550/arXiv.1012.2599,
2010. a
Cao, Y., Yang, X., and Zhu, X.: Retrieval Snow Depth by Artificial Neural
Network Methodology from Integrated AMSR-E and in-Situ
Data – hA Case Study in Qinghai-Tibet Plateau, Chinese
Geogr. Sci., 18, 356–360, https://doi.org/10.1007/s11769-008-0356-2, 2008. a
Chen, N., Li, W., Gatebe, C., Tanikawa, T., Hori, M., Shimada, R., Aoki, T.,
and Stamnes, K.: New Neural Network Cloud Mask Algorithm Based on Radiative
Transfer Simulations, Remote Sens. Environ., 219, 62–71,
https://doi.org/10.1016/j.rse.2018.09.029, 2018. a, b, c
Chi, J., Kim, H.-C., Lee, S., and Crawford, M. M.: Deep Learning Based
Retrieval Algorithm for Arctic Sea Ice Concentration from AMSR2
Passive Microwave and MODIS Optical Data, Remote Sens. Environ.,
231, 111204, https://doi.org/10.1016/j.rse.2019.05.023, 2019. a
Cuomo, S., di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., and
Piccialli, F.: Scientific Machine Learning through Physics-Informed
Neural Networks: Where We Are and What's Next, 2022. a
Daw, A., Karpatne, A., Watkins, W., Read, J., and Kumar, V.: Physics-Guided
Neural Networks (PGNN): An Application in Lake Temperature
Modeling, ArXiv [preprint], https://doi.org/10.48550/arXiv.1710.11431, 2021. a
Di Natale, L., Svetozarevic, B., Heer, P., and Jones, C.: Physically
Consistent Neural Networks for Building Thermal Modeling: Theory and
Analysis, Appl. Energ., 325, 119806,
https://doi.org/10.1016/j.apenergy.2022.119806, 2022. a
Dumont, M., Brissaud, O., Picard, G., Schmitt, B., Gallet, J.-C., and Arnaud, Y.: High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths – comparison with modelling results, Atmos. Chem. Phys., 10, 2507–2520, https://doi.org/10.5194/acp-10-2507-2010, 2010. a
Ehrlich, A., Wendisch, M., Lüpkes, C., Buschmann, M., Bozem, H., Chechin, D., Clemen, H.-C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A., Jäkel, E., Järvinen, E., Jourdan, O., Kästner, U., Kliesch, L.-L., Köllner, F., Mech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E., Schnaiter, M., Schneider, J., Stapf, J., and Zanatta, M.: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019, 2019. a
Fan, Y., Li, W., Chen, N., Ahn, J.-H., Park, Y.-J., Kratzer, S., Schroeder, T.,
Ishizaka, J., Chang, R., and Stamnes, K.: OC-SMART: A Machine
Learning Based Data Analysis Platform for Satellite Ocean Color Sensors,
Remote Sens. Environ., 253, 112236,
https://doi.org/10.1016/j.rse.2020.112236, 2021. a, b
Gao, F., Schaaf, C., Jin, Y., Lucht, W., and Strahler, A.: Deriving Albedo from
Coupled MERIS and MODIS Surface Products, in: Proceedings of the
MERIS User Workshop, ESA SP-549, Frascati, Italy, 10–14, https://ntrs.nasa.gov/citations/20040070915 (last access: 18 February 2023),
2004. a
Gatebe, C. K. and King, M. D.: Airborne Spectral BRDF of Various Surface
Types (Ocean, Vegetation, Snow, Desert, Wetlands, Cloud Decks, Smoke Layers)
for Remote Sensing Applications, Remote Sens. Environ., 179,
131–148, https://doi.org/10.1016/j.rse.2016.03.029, 2016. a, b
Gatebe, C. K., King, M. D., Lyapustin, A. I., Arnold, G. T., and Redemann, J.:
Airborne Spectral Measurements of Ocean Directional Reflectance,
J. Atmos. Sci., 62, 1072–1092, https://doi.org/10.1175/JAS3386.1,
2005. a
Grenfell, T. C.: Seasonal and Spatial Evolution of Albedo in a
Snow-Ice-Land-Ocean Environment, J. Geophys. Res., 109,
C01001, https://doi.org/10.1029/2003JC001866, 2004. a
Grenfell, T. C. and Perovich, D. K.: Spectral Albedos of Sea Ice and Incident
Solar Irradiance in the Southern Beaufort Sea, J. Geophys.
Res.-Oceans, 89, 3573–3580, https://doi.org/10.1029/JC089iC03p03573, 1984. a, b
Grenfell, T. C. and Warren, S. G.: Representation of a Nonspherical Ice
Particle by a Collection of Independent Spheres for Scattering and Absorption
of Radiation, J. Geophys. Res.-Atmos., 104,
31697–31709, https://doi.org/10.1029/1999JD900496, 1999. a
Grenfell, T. C., Warren, S. G., and Mullen, P. C.: Reflection of Solar
Radiation by the Antarctic Snow Surface at Ultraviolet, Visible, and
near-Infrared Wavelengths, J. Geophys. Res.-Atmos., 99,
18669–18684, https://doi.org/10.1029/94JD01484, 1994. a
Gröbner, J., Reda, I., Wacker, S., Nyeki, S., Behrens, K., and Gorman, J.:
A New Absolute Reference for Atmospheric Longwave Irradiance Measurements
with Traceability to SI Units, J. Geophys. Res.-Atmos., 119, 7083–7090, https://doi.org/10.1002/2014JD021630, 2014. a
Hamre, B., Winther, J.-G., Gerland, S., Stamnes, J. J., and Stamnes, K.:
Modeled and Measured Optical Transmittance of Snow-Covered First-Year Sea Ice
in Kongsfjorden, Svalbard, J. Geophys. Res.-Oceans,
109, C10006, https://doi.org/10.1029/2003JC001926, 2004. a
Herbert, C., Munoz-Martin, J. F., Llaveria, D., Pablos, M., and Camps, A.:
Sea Ice Thickness Estimation Based on Regression Neural Networks Using
L-Band Microwave Radiometry Data from the FSSCat Mission, Remote
Sensing, 13, 1366, https://doi.org/10.3390/rs13071366, 2021. a
Hu, Y., Che, T., Dai, L., and Xiao, L.: Snow Depth Fusion Based on
Machine Learning Methods for the Northern Hemisphere, Remote Sensing, 13, 1250,
https://doi.org/10.3390/rs13071250, 2021. a
International Arctic Science Committee (IASC): Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Science Plan, https://iasc.info/images/news/MosaicSciencePlan2016.pdf (last access: 18 February 2023), 2016. a
Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, in: International
Conference on Machine Learning, 448–456, 2015. a
Istomina, L., Heygster, G., Huntemann, M., Schwarz, P., Birnbaum, G., Scharien, R., Polashenski, C., Perovich, D., Zege, E., Malinka, A., Prikhach, A., and Katsev, I.: Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 1: Validation against in situ, aerial, and ship cruise data, The Cryosphere, 9, 1551–1566, https://doi.org/10.5194/tc-9-1551-2015, 2015. a, b, c, d, e, f, g
Jäkel, E., Ehrlich, A., Schäfer, M., and Wendisch, M.: Aircraft
Measurements of Up- and Downward Irradiances over Arctic Sea Ice during
the ACLOUD Campaign, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.891588, 2018. a, b
Jäkel, E., Stapf, J., Wendisch, M., Nicolaus, M., Dorn, W., and Rinke, A.: Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns, The Cryosphere, 13, 1695–1708, https://doi.org/10.5194/tc-13-1695-2019, 2019. a
Jäkel, E., Carlsen, T., Ehrlich, A., Wendisch, M., Schäfer, M., Rosenburg, S., Nakoudi, K., Zanatta, M., Birnbaum, G., Helm, V., Herber, A., Istomina, L., Mei, L., and Rohde, A.: Comparison of optical-equivalent snow grain size estimates under Arctic low Sun conditions during PAMARCMiP 2018, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-14, 2021a. a, b, c
Jäkel, E., Schäfer, M., Ehrlich, A., Becker, S., and Klingebiel, M.:
Aircraft Measurements of Spectral Solar Up- and Downward Irradiances in the
Arctic during the MOSAiC-ACA Campaign 2020, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.933850, 2021b. a
Jin, Z., Stamnes, K., Weeks, W. F., and Tsay, S.-C.: The Effect of Sea Ice on
the Solar Energy Budget in the Atmosphere-Sea Ice-Ocean System: A Model
Study, J. Geophys. Res., 99, 25281, https://doi.org/10.1029/94JC02426,
1994. a
Karlsson, K.-G., Riihelä, A., Müller, R., Meirink, J. F.,
Sedlar, J., Stengel, M., Lockhoff, M., Trentmann, J., Kaspar, F., Hollmann,
R., and Wolters, E.: CLARA-A1: CM SAF cLouds, Albedo and
Radiation Dataset from AVHRR Data – Edition 1: Monthly Means/Daily Means/Pentad Means/Monthly Histograms, CM SAF [data set],
https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V001, 2012. a, b, c
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Fokke Meirink, J., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper, S., Håkansson, N., and Hollmann, R.: CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data, Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, 2017. a, b
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M.,
Solodovnik, I., Meirink, J. F., Devasthale, A., Kothe, S.,
Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff,
Gerd-Jan, Stein, D., Finkensieper, S., Håkansson, N., Hollmann, R.,
Kaiser, J., and Werscheck, M.: CLARA-A2.1: CM SAF cLoud, Albedo
and Surface RAdiation Dataset from AVHRR Data – Edition 2.1, CM SAF [data set],
https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002_01, 2020. a, b, c
Karvonen, J.: Baltic Sea Ice Concentration Estimation Using SENTINEL-1 SAR
and AMSR2 Microwave Radiometer Data, IEEE T. Geosci.
Remote Sens., 55, 2871–2883, https://doi.org/10.1109/TGRS.2017.2655567, 2017. a
Key, J., Wang, X., Liu, Y., Dworak, R., and Letterly, A.: The AVHRR Polar
Pathfinder Climate Data Records, Remote Sensing, 8, 167,
https://doi.org/10.3390/rs8030167, 2016. a, b, c
Kharbouche, S. and Muller, J.-P.: Sea Ice Albedo from MISR and
MODIS: Production, Validation, and Trend Analysis, Remote
Sensing, 11, 9, https://doi.org/10.3390/rs11010009, 2018. a, b
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, arXiv
[preprint],
https://doi.org/10.48550/arXiv.1412.6980, 2014. a
Knap, W. H., Reijmer, C. H., and Oerlemans, J.: Narrowband to Broadband
Conversion of Landsat TM Glacier Albedos, Int. J. Remote
Sens., 20, 2091–2110, https://doi.org/10.1080/014311699212362, 1999. a
Knudsen, E. M., Heinold, B., Dahlke, S., Bozem, H., Crewell, S., Gorodetskaya, I. V., Heygster, G., Kunkel, D., Maturilli, M., Mech, M., Viceto, C., Rinke, A., Schmithüsen, H., Ehrlich, A., Macke, A., Lüpkes, C., and Wendisch, M.: Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995–18022, https://doi.org/10.5194/acp-18-17995-2018, 2018. a, b
König, M., Hieronymi, M., and Oppelt, N.: Application of Sentinel-2 MSI
in Arctic Research: Evaluating the Performance of Atmospheric
Correction Approaches Over Arctic Sea Ice, Front. Earth Sci., 7,
22, https://doi.org/10.3389/feart.2019.00022, 2019. a
LeCun, Y., Bengio, Y., and Hinton, G.: Deep Learning, Nature, 521, 436–444,
https://doi.org/10.1038/nature14539, 2015. a
Lee, G., Kim, D., Kwon, H.-H., and Choi, E.: Estimation of Maximum Daily
Fresh Snow Accumulation Using an Artificial Neural Network Model,
Adv. Meteorol., 2019, 2709351, https://doi.org/10.1155/2019/2709351, 2019. a
Li, W., Stamnes, K., Eide, H., and Spurr, R.: Bidirectional Reflectance
Distribution Function of Snow: Corrections for the Lambertian Assumption
in Remote Sensing Applications, Opt. Eng., 46, 066201,
https://doi.org/10.1117/1.2746334, 2007. a
Li, X., Fan, X., Yan, H., Li, A., Wang, M., and Qu, Y.: MAPPING GLOBAL OCEAN SURFACE ALBEDO FROM SATELLITE OBSERVATIONS: MODELS, ALGORITHMS, AND DATASETS, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 967–970, https://doi.org/10.5194/isprs-archives-XLII-3-967-2018, 2018. a
Liang, S.: Narrowband to Broadband Conversions of Land Surface Albedo I
Algorithms, Remote Sens. Environ., 76, 213–238,
https://doi.org/10.1016/S0034-4257(00)00205-4, 2000. a, b
Liang, S., Strahler, A. H., and Walthall, C.: Retrieval of Land Surface
Albedo from Satellite Observations: A Simulation Study, J.
Appl. Meteorol., 38, 712–725,
https://doi.org/10.1175/1520-0450(1999)038<0712:ROLSAF>2.0.CO;2, 1999. a
Liang, S., Wang, D., He, T., and Yu, Y.: Remote Sensing of Earth's Energy
Budget: Synthesis and Review, Int. J. Digital Earth, 12,
737–780, https://doi.org/10.1080/17538947.2019.1597189, 2019. a
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W.,
Zhang, X., Zhao, X., and Zhou, J.: The Global Land Surface Satellite
(GLASS) Product Suite, B. Am. Meteorol.
Soc., 102, E323–E337, https://doi.org/10.1175/BAMS-D-18-0341.1, 2021. a, b
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013. a
Lindsay, R.: Arctic Sea-Ice Albedo Derived from RGPS-based Ice-Thickness
Estimates, Ann. Glaciol., 33, 225–229,
https://doi.org/10.3189/172756401781818103, 2001. a, b
Liu, J., Zhang, Y., Cheng, X., and Hu, Y.: Retrieval of Snow Depth over
Arctic Sea Ice Using a Deep Neural Network, Remote Sensing, 11, 2864,
https://doi.org/10.3390/rs11232864, 2019. a
Liu, N. F., Liu, Q., Wang, L. Z., Liang, S. L., Wen, J. G., Qu, Y., and Liu, S. H.: A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data, Hydrol. Earth Syst. Sci., 17, 2121–2129, https://doi.org/10.5194/hess-17-2121-2013, 2013. a
Lucht, W. and Lewis, P.: Theoretical Noise Sensitivity of BRDF and Albedo
Retrieval from the EOS-MODIS and MISR Sensors with Respect to Angular
Sampling, Int. J. Remote Sens., 21, 81–98,
https://doi.org/10.1080/014311600211000, 2000. a
Lucht, W., Schaaf, C., and Strahler, A.: An Algorithm for the Retrieval of
Albedo from Space Using Semiempirical BRDF Models, IEEE T.
Geosci. Remote, 38, 977–998, https://doi.org/10.1109/36.841980, 2000. a, b
Lüpkes, C.: Aircraft Campaign Arctic Boundary Layer Fluxes (AFLUX)
2019, in: EPIC3Workshop on Airborne Activities in the Arctic:
Science and Prospects, Leipzig, https://epic.awi.de/id/eprint/45781/ (last access: 18 February 2023), 2017. a
Mehta, M., Singh, R., Singh, A., Singh, N., and Anshumali: Recent Global
Aerosol Optical Depth Variations and Trends – A Comparative
Study Using MODIS and MISR Level 3 Datasets, Remote Sens.
Environ., 181, 137–150, https://doi.org/10.1016/j.rse.2016.04.004, 2016. a
Mustapha, M. A. and Saitoh, S.-I.: Observations of Sea Ice Interannual
Variations and Spring Bloom Occurrences at the Japanese Scallop Farming
Area in the Okhotsk Sea Using Satellite Imageries, Estuar. Coast.
Shelf S., 77, 577–588, https://doi.org/10.1016/j.ecss.2007.10.021, 2008. a
Nair, V. and Hinton, G. E.: Rectified Linear Units Improve Restricted Boltzmann Machines, in: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, 807–814, Omnipress, Madison, WI, USA, https://isbnsearch.org/isbn/9781605589077 (last access: 18 February 2023), 2010. a
Nihashi, S., Ohshima, K. I., Tamura, T., Fukamachi, Y., and Saitoh, S.-I.:
Thickness and Production of Sea Ice in the Okhotsk Sea Coastal Polynyas
from AMSR-E, J. Geophys. Res., 114, C10025,
https://doi.org/10.1029/2008jc005222, 2009. a
Peng, J., Yu, Y., Yu, P., and Liang, S.: The VIIRS Sea-Ice Albedo Product
Generation and Preliminary Validation, Remote Sensing, 10, 1826,
https://doi.org/10.3390/rs10111826, 2018. a, b, c, d
Perovich, D. K.: Seasonal Evolution of the Albedo of Multiyear Arctic Sea
Ice, J. Geophys. Res., 107, 8044, https://doi.org/10.1029/2000JC000438,
2002. a
Perovich, D. K. and Polashenski, C.: Albedo Evolution of Seasonal Arctic
Sea Ice: ALEDO EVOLUTION OF SEASONAL SEA ICE, Geophys. Res.
Lett., 39, L08501,
https://doi.org/10.1029/2012GL051432, 2012. a
Pope, E. L., Willis, I. C., Pope, A., Miles, E. S., Arnold, N. S., and Rees,
W. G.: Contrasting Snow and Ice Albedos Derived from MODIS, Landsat
ETM+ and Airborne Data from Langjökull, Iceland, Remote Sens.
Environ., 175, 183–195, https://doi.org/10.1016/j.rse.2015.12.051, 2016. a
Qu, Y., Liang, S., Liu, Q., He, T., Liu, S., and Li, X.: Mapping Surface
Broadband Albedo from Satellite Observations: A Review of
Literatures on Algorithms and Products, Remote Sensing, 7,
990–1020, https://doi.org/10.3390/rs70100990, 2015. a
Ren, S., Miles, E. S., Jia, L., Menenti, M., Kneib, M., Buri, P., McCarthy,
M. J., Shaw, T. E., Yang, W., and Pellicciotti, F.: Anisotropy
Parameterization Development and Evaluation for Glacier Surface
Albedo Retrieval from Satellite Observations, Remote Sensing, 13, 1714,
https://doi.org/10.3390/rs13091714, 2021. a, b
Riihelä, A., Manninen, T., Laine, V., Andersson, K., and Kaspar, F.: CLARA-SAL: a global 28 yr timeseries of Earth's black-sky surface albedo, Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013, 2013. a
Rösel, A. and Kaleschke, L.: Exceptional Melt Pond Occurrence in the Years
2007 and 2011 on the Arctic Sea Ice Revealed from MODIS Satellite
Data: melt ponds on arctic sea ice, J. Geophys. Res.-Oceans, 117, C05018,
https://doi.org/10.1029/2011JC007869, 2012. a
Rösel, A., Kaleschke, L., and Birnbaum, G.: Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network, The Cryosphere, 6, 431–446, https://doi.org/10.5194/tc-6-431-2012, 2012. a
Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A.: How Does Batch
Normalization Help Optimization?, arXiv [preprint],
https://doi.org/10.48550/arXiv.1805.11604, 2019. a
Schaaf, C. and Wang, Z.: MCD43A2 MODIS/Terra+Aqua BRDF/Albedo
Quality Daily L3 Global – 500m V006, MCD43A2 [data set], https://doi.org/10.5067/MODIS/MCD43A2.006, 2015a. a
Schaaf, C. and Wang, Z.: MCD43D59 MODIS/Terra+Aqua BRDF/Albedo
White Sky Albedo VIS Band Daily L3 Global 30ArcSec CMG, MCD43D59 [data set], https://doi.org/10.5067/MODIS/MCD43D59.006, 2015b. a
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T.,
Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M.,
Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d'Entremont,
R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First Operational
BRDF, Albedo Nadir Reflectance Products from MODIS, Remote Sens.
Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3, 2002. a
Scott, D. W.: Multivariate Density Estimation: Theory, Practice,
and Visualization, John Wiley & Sons, ISBN 978-0-471-69755-8, 2015. a
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,
and Hinton, G.: Dropout: A Simple Way to Prevent Neural Networks from
Overfitting, J. Mach. Learn. Res., 15, 1929–1958, https://doi.org/10.5555/2627435.2670313, 2014. a
Stamnes, K., Hamre, B., Stamnes, J., Ryzhikov, G., Biryulina, M., Mahoney, R.,
Hauss, B., and Sei, A.: Modeling of Radiation Transport in Coupled
Atmosphere-Snow-Ice-Ocean Systems, J. Quant. Spectrosc.
Ra., 112, 714–726, https://doi.org/10.1016/j.jqsrt.2010.06.006, 2011. a, b, c, d
Stamnes, K., Hamre, B., Stamnes, S., Chen, N., Fan, Y., Li, W., Lin, Z., and
Stamnes, J.: Progress in Forward-Inverse Modeling Based on Radiative Transfer
Tools for Coupled Atmosphere-Snow/Ice-Ocean Systems: A Review and
Description of the Accurt Model, Appl. Sci., 8, 2682,
https://doi.org/10.3390/app8122682, 2018. a, b, c, d, e
Stapf, J., Ehrlich, A., Jäkel, E., and Wendisch, M.: Aircraft Measurements
of Broadband Irradiance during the ACLOUD Campaign in 2017,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.900442, 2019. a, b
Stapf, J., Ehrlich, A., and Wendisch, M.: Aircraft Measurements of Broadband
Irradiance during the AFLUX Campaign in 2019, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.932020, 2021a. a, b
Stapf, J., Ehrlich, A., and Wendisch, M.: Influence of Thermodynamic State
Changes on Surface Cloud Radiative Forcing in the Arctic: A
Comparison of Two Approaches Using Data From AFLUX and SHEBA,
J. Geophys. Res.-Atmos., 126, e2020JD033589,
https://doi.org/10.1029/2020JD033589, 2021b. a, b, c
Stroeve, J., Box, J. E., Gao, F., Liang, S., Nolin, A., and Schaaf, C.:
Accuracy Assessment of the MODIS 16-Day Albedo Product for Snow:
Comparisons with Greenland in Situ Measurements, Remote Sens.
Environ., 94, 46–60, https://doi.org/10.1016/j.rse.2004.09.001, 2005. a, b, c
Sturm, M. and Holmgren, J.: An Automatic Snow Depth Probe for Field
Validation Campaigns, Water Resour. Res., 54, 9695–9701,
https://doi.org/10.1029/2018WR023559, 2018. a
Tedesco, M. and Jeyaratnam, J.: A New Operational Snow Retrieval Algorithm
Applied to Historical AMSR-E Brightness Temperatures, Remote Sensing,
8, 1037, https://doi.org/10.3390/rs8121037, 2016. a
Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M., and Pampaloni, P.:
Artificial Neural Network-Based Techniques for the Retrieval of SWE and
Snow Depth from SSM/I Data, Remote Sens. Environ., 90,
76–85, https://doi.org/10.1016/j.rse.2003.12.002, 2004. a
Toyota, T., Takatsuji, S., Tateyama, K., Naoki, K., and Ohshima, K. I.:
Properties of Sea Ice and Overlying Snow in the Southern Sea of
Okhotsk, J. Oceanogr., 63, 393–411,
https://doi.org/10.1007/s10872-007-0037-2, 2007. a
Tschudi, M. A., Maslanik, J. A., and Perovich, D. K.: Derivation of Melt Pond
Coverage on Arctic Sea Ice Using MODIS Observations, Remote Sens.
Environ., 112, 2605–2614, https://doi.org/10.1016/j.rse.2007.12.009, 2008. a
Turlach, B. A.: Bandwidth Selection in Kernel Density Estimation: A Review,
in: CORE and Institut de Statistique, Citeseer, https://EconPapers.repec.org/RePEc:wop:humbse:9307, 1993. a
Tynes, H. H., Kattawar, G. W., Zege, E. P., Katsev, I. L., Katsev, I. L.,
Prikhach, A. S., Chaikovskaya, L. I., and Chaikovskaya, L.: Monte Carlo and
Multicomponent Approximation Methods for Vector Radiative Transfer by Use of
Effective Mueller Matrix Calculations, Appl. Optics, 40, 400–412,
https://doi.org/10.1364/ao.40.000400, 2001. a
Vermote, E., Tanre, D., Deuze, J., Herman, M., and Morcette, J.-J.: Second
Simulation of the Satellite Signal in the Solar Spectrum, 6S:
An Overview, IEEE T. Geosci. Remote, 35,
675–686, https://doi.org/10.1109/36.581987, 1997. a
Vihma, T., Pirazzini, R., Fer, I., Renfrew, I. A., Sedlar, J., Tjernström, M., Lüpkes, C., Nygård, T., Notz, D., Weiss, J., Marsan, D., Cheng, B., Birnbaum, G., Gerland, S., Chechin, D., and Gascard, J. C.: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review, Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, 2014. a
Wang, J., Yuan, Q., Shen, H., Liu, T., Li, T., Yue, L., Shi, X., and Zhang, L.:
Estimating Snow Depth by Combining Satellite Data and Ground-Based
Observations over Alaska: A Deep Learning Approach, J.
Hydrol., 585, 124828,
https://doi.org/10.1016/j.jhydrol.2020.124828, 2020. a
Wang, Z., Schaaf, C. B., Chopping, M. J., Strahler, A. H., Wang, J., Román,
M. O., Rocha, A. V., Woodcock, C. E., and Shuai, Y.: Evaluation of
Moderate-resolution Imaging Spectroradiometer (MODIS) Snow Albedo
Product (MCD43A) over Tundra, Remote Sens. Environ., 117,
264–280, https://doi.org/10.1016/j.rse.2011.10.002, 2012.
a, b
Warren, S. G.: Optical Properties of Ice and Snow, Philos. T.
Roy. Soc. A, 377,
20180161, https://doi.org/10.1098/rsta.2018.0161, 2019. a, b
Wendisch, M., Macke, A., Ehrlich, A., Lüpkes, C., Mech, M., Chechin, D.,
Dethloff, K., Velasco, C. B., Bozem, H., Brückner, M., et al.: The
Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform
Observations to Unravel the Role of Clouds and Aerosol Particles in
Arctic Amplification, B. Am. Meteorol. Soc.,
100, 841–871, https://doi.org/10.1175/BAMS-D-18-0072.1, 2019. a, b, c
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, 2013. a
Xiong, X., Stamnes, K., and Lubin, D.: Surface Albedo over the Arctic
Ocean Derived from AVHRR and Its Validation with SHEBA Data,
JOURNAL OF APPLIED METEOROLOGY, 41, 14,
https://doi.org/10.1175/1520-0450(2002)041<0413:SAOTAO>2.0.CO;2, 2002. a
Zege, E., Malinka, A., Katsev, I., Prikhach, A., Heygster, G., Istomina, L.,
Birnbaum, G., and Schwarz, P.: Algorithm to Retrieve the Melt Pond Fraction
and the Spectral Albedo of Arctic Summer Ice from Satellite Optical Data,
Remote Sens. Environ., 163, 153–164,
https://doi.org/10.1016/j.rse.2015.03.012, 2015. a, b, c, d, e
Zhu, L., Zhang, Y., Wang, J., Tian, W., Liu, Q., Ma, G., Kan, X., and Chu, Y.:
Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote
Sensing Data Based on Deep Learning, Remote Sensing, 13, 584,
https://doi.org/10.3390/rs13040584, 2021. a
Short summary
We present a method to compute albedo (percentage of the light reflected) of the cryosphere surface using observations from optical satellite sensors. This method can be applied to sea ice, snow-covered ice, melt pond, open ocean, and mixtures thereof. Evaluation of the albedo values calculated using this approach demonstrated excellent agreement with observations. In addition, we have included a statistical comparison of the proposed method's results with those derived from other approaches.
We present a method to compute albedo (percentage of the light reflected) of the cryosphere...