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Abstract. A framework was established for remote sensing
of sea ice albedo that integrates sea ice physics with high
computational efficiency and that can be applied to opti-
cal sensors that measure appropriate radiance data. A scien-
tific machine learning (SciML) approach was developed and
trained on a large synthetic dataset (SD) constructed using a
coupled atmosphere—surface radiative transfer model (RTM).
The resulting RTM—-SciML framework combines the RTM
with a multi-layer artificial neural network SciML model.
In contrast to the Moderate Resolution Imaging Spectro-
radiometer (MODIS) MCD43 albedo product, this frame-
work does not depend on observations from multiple days
and can be applied to single angular observations obtained
under clear-sky conditions. Compared to the existing melt
pond detection (MPD)-based approach for albedo retrieval,
the RTM-SciML framework has the advantage of being ap-
plicable to a wide variety of cryosphere surfaces, both hetero-
geneous and homogeneous. Excellent agreement was found
between the RTM-SciML albedo retrieval results and mea-
surements collected from airplane campaigns. Assessment
against pyranometer data (N = 4144) yields RMSE = 0.094
for the shortwave albedo retrieval, while evaluation against
albedometer data (N = 1225) yields RMSE = 0.069, 0.143,
and 0.085 for the broadband albedo in the visible, near-
infrared, and shortwave spectral ranges, respectively.

1 Introduction

Sea ice regulates global climate through several feedback
mechanisms.! Broadband albedo is a critical parameter
determining the radiative energy balance of the complex
atmosphere—cryosphere system.

For decades, optical sensors deployed on geostationary
and polar-orbiting satellites have been used to derive the
global-scale surface broadband albedo. However, the ma-
jority of albedo products are land-surface products, while
ocean surface albedo data (including sea ice) are left blank
(Qu et al., 2015). Table 1 compares the currently operational
products and algorithms capable of retrieving albedo at the
sea ice surface.

The broadband albedo estimated by APP-x is based on
a narrow-to-broadband conversion (NTBC) of reflectance
under a Lambertian surface assumption (Key et al., 2016),
which implies that the radiance reflected from the surface is
isotropic and that the value of albedo equals 7 times the re-
flected radiance. However, fresh snow and white ice surfaces
cannot be considered Lambertian; dry snow and ice surfaces
exhibit strong forward scattering, and the impact of the bidi-
rectional distribution of radiance reflected must be rectified
in a post-processing step as discussed by Li et al. (2007).

Taking into account the anisotropic properties of the sea
ice surface, the (broadband) albedo retrieval procedure re-

n this paper, “sea ice” refers to the surface conditions of sea
ice’s entire life cycle: open water, bare sea ice, melt pond, snow-
covered sea ice, and their mixtures. The phrase “bare sea ice” is
used to refer to the sea ice that is not covered by a melt pond or
SNOw.
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quires three steps: (1) atmospheric correction, (2) anisotropy
correction to obtain narrow-band or spectral albedo, and
(3) use of spectral to broadband conversion (STBC) to in-
tegrate over the spectral range to obtain (or alternatively de-
rive coefficients to estimate) broadband albedo (Knap et al.,
1999; Liang, 2000; Xiong et al., 2002; Stroeve et al., 2005).
The STBC coefficients derived by Liang et al. (1999); Liang
(2000) were applied to retrieve sea ice albedo using Medium
Resolution Imaging Spectrometer (MERIS) and Multi-angle
Imaging SpectroRadiometer (MISR) instruments, respec-
tively (Gao et al., 2004; Kharbouche and Muller, 2018). The
retrievals are based on atmospherically corrected level 2 (re-
flectance) data from the instruments, as opposed to level 1
(radiance) data measured at the top of the atmosphere (TOA).

The Moderate Resolution Imaging Spectroradiometer
(MODIS) MCD43A and MCD43D products describe the
effect of reflectance anisotropy on land—ocean surfaces us-
ing the RossThick-LiSparse (RTLSR) model provided by
Lucht et al. (2000), which is a semi-empirical linear kernel-
driven model that requires a sufficient amount of cloud-free
observations within a 16d window. Because MCD43 is a
land albedo product, it only delivers very limited shortwave
albedo values near the coast due to the lack of a spectral bi-
directional reflectance distribution function (BRDF) for sea
ice surfaces. In fact, there are only a few BRDF measure-
ments that can be used to assist in correcting the anisotropy
of snow and sea ice surfaces (e.g., Gatebe et al., 2005; Du-
mont et al., 2010; Gatebe and King, 2016), and they are far
from conclusive in covering the complicated sea ice surface
or encompassing a sufficient angular and spectral range.

Due to the scarcity of observations, in more recent efforts
the BRDF of the cryosphere surface is approximated using
radiative transfer models (RTMs). Examples of such efforts
are the sea ice albedo retrieval based on the melt pond de-
tection (MPD) algorithm (Zege et al., 2015) and the direct-
estimation algorithm (Qu et al., 2016). Both algorithms try
to establish a relation between TOA-measured radiance and
surface albedo in two steps; the radiative processes in the at-
mosphere and on the cryosphere surface were considered in-
dependently (i.e., “uncoupled”). The atmospheric reflectance
and transmittance are calculated with RTMs (Tynes et al.,
2001; Vermote et al., 1997). Following this step, the calcu-
lated values are used to determine the TOA radiance and re-
flectance that corresponds to some specific surface condition,
and the surface is modeled as the “linear blend” of sea ice,
snow, melt pond, and water components.

In contrast, we present a framework that integrates a cou-
pled atmosphere—surface RTM (Stamnes et al., 2018) with
scientific machine learning (SciML) models. The coupled
RTM model considers all radiative processes occurring in
the coupled atmosphere, snow, and ice system. Multiple re-
flections between the surface and the atmosphere and the at-
mospheric molecular and aerosol-induced modifications to
the incident spectral distribution of the solar radiation are
both taken into account. At the atmosphere—surface inter-
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face, Fresnel’s equations and Snells’ law appropriately de-
scribe light interactions as required. Additionally, this RTM
is combined with a snow, ice, and water model that simulates
the snow and ice crystals and their inherent optical proper-
ties (IOPs); the snow, ice, and melt pond layering; and the
impurities included within the snow, ice, and water layers
(Stamnes et al., 2011).

In the direct-estimation method, the same IOPs were de-
ployed to derive the BRDFs of the snow surface (Qu et al.,
2016). However, because the direct-estimation algorithm de-
couples the atmosphere from the ocean layer, it is unable to
accurately simulate the “snow-covered sea ice” situation; the
“snow surface” scenario refers to snow that has been placed
on land. In a coupled RTM, snow is correctly simulated as
a layer of snow on the surface above the air-sea ice inter-
face. Similarly, the MPD algorithm uses an uncoupled RTM.
Based on the absorption of yellow pigments in ice, it mod-
els sea ice’s BRDF exclusively for dry and white ice, ignor-
ing the effects of air bubbles and brine pockets (Zege et al.,
2015). In a coupled RTM, sea ice is simulated as a layer of
ice with brine pockets and air bubble inclusions floating on
deep ocean water.

This paper is structured as follows. Section 2 provides
a summary of the RTM-SciML framework for albedo re-
trieval, describes the cloud screening and surface classifi-
cation model, and introduces the validation and comparison
datasets used in this study. Section 3 is devoted to valida-
tion of the albedo-retrieval products, and Sect. 4 addresses
the possible sources of uncertainty in the validation data. In
Sect. 5, the albedo product is compared to the MCD43 prod-
uct (Sect. 5.1), two MPD-based products (MERIS and OLCI
in Sects. 5.2 and 5.3, respectively) and two direct-estimation
products (GLASS and VIIRS, in Sect. 5.4). A conclusion and
summary are provided in Sect. 6.

2 Methodology
2.1 Overall framework

In this work, we present a new method for albedo re-
trieval: scientific machine learning based on a coupled RTM
(hereafter RTM—SciML albedo algorithm). Figure 1 shows
a flowchart of the proposed RTM-SciML framework for
albedo retrieval, while Sect. 2.2-2.6 discuss the steps in more
detail.

First, a synthetic dataset (SD) is constructed using a
coupled-RTM, AccuRT (Stamnes et al., 2018). It consists of
TOA radiances simulated in suitable satellite channels as a
function of observational and solar angles, as well as the as-
sociated broadband albedo at the surface. This SD encom-
passes a range of different surface types, including snow-
covered ice, melt ponds, and bare sea ice, as well as their
mixtures. All optical properties of surface and atmospheric
constituents, as well as radiative processes within the coupled
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atmosphere—snow—sea ice—water system, are deduced from
first principles; information about both the surface BRDF and
the IOPs of the atmosphere is implicitly taken into account.
We are thus saved from the procedure of performing atmo-
spheric corrections.

The coupled RTM ensures that the “forward problem” is
solved correctly, yielding reliable total radiance and irradi-
ance values at any location of the coupled system given the
IOPs of the system constituents. Following the physically
consistent SD, scientific machine learning (SciML) models
can be used to approximate solutions to the “inverse prob-
lem”, which answers the following question through an im-
plicit iterative process (i.e., by minimizing a loss function
repeatedly during the training of SciML models): “given the
observed TOA radiance and the sun—satellite geometry an-
gles, what is the most likely albedo of the sea ice surface?”
The SciML models perform without reliance on predefined
spectral reflectance threshold values for individual types of
surface, which eliminates errors caused by incorrect sur-
face condition assumptions. When deployed in practice, the
surface classification and albedo retrieval are separate pro-
cesses; an independent machine learning classification mask
(MLCM, described briefly in Sect. 2.4) performs both cloud
screening and surface pixel classification.

2.2 Synthetic dataset (SD) generated by coupled RTM

The AccuRT radiative transfer model (Stamnes et al., 2018)
is able to simulate a coupled system with changes in refrac-
tive index across the atmosphere—water (in solid or liquid
form) interface. Inputs to AccuRT are the IOPs of the two ad-
jacent coupled slabs (upper slab is atmosphere and snow and
lower slab is ocean and ice). Each slab can be partitioned into
many adjacent layers, with the IOPs being constant within
each layer but varying between them. The IOPs depend on
the medium’s absorption and scattering coefficients, as well
as the scattering phase functions. Within the AccuRT com-
puter code, Mie theory and the particle size distributions are
used to generate IOPs based on user-defined physical prop-
erties of the medium (Stamnes et al., 2011). Table 2 summa-
rizes the parameters used to calculate the IOPs of bare ice,
snow-covered ice, open water, melt ponds, and aerosols. Ap-
pendix A discusses the value ranges of the physical parame-
ters in more detail.

Among the sea ice inclusions, air bubbles are modeled as
pure scatterers, brine pockets scatter and absorb light, and
black carbon impurities mainly absorb light. The effective
grain size re of snow particles closely resembles the effective
light path traveled by a photon, and hence a larger . suggests
a lower reflectance (and albedo). Additionally, bulk proper-
ties such as ice, pond, and snow thickness (%, hn, ks, respec-
tively) and snow density (ps) also impact the optical depth of
the medium. Notably, the parameterizations employed here
are consistent with the physics of sea ice, snow, and water

The Cryosphere, 17, 1053-1087, 2023
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Figure 1. Flowchart of the proposed RTM—SciML framework for albedo retrieval.

(Grenfell and Maykut, 1977; Grenfell and Perovich, 1984;
Warren, 2019).

Pseudo-random values of the physical parameters of ice,
water, and snow within realistic ranges were applied to gen-
erate 158 000 cases each for (i) bare ice, (ii) ice with meltwa-
ter, and (iii) ice with snow cover (the value ranges are shown
in Tables A1-A3). These surface and atmospheric parame-
ters, together with randomly distributed solar and viewing
geometries (Table A4) form a dataset suitable for generating
a SD of TOA radiances and corresponding albedo values that
can be used to train a SciML algorithm.

Altogether, the 158000 x 3 =474000 configurations
cover most expected combinations of surface types and atmo-
spheric conditions encountered during the sea ice life cycle.
For each case, TOA radiances at appropriate sensor channels,
as well as the three broadband albedo values (oyis, ONIR,
asw), were computed based on downward and upward irra-
diances simulated using AccuRT (Stamnes et al., 2018).

To summarize, AccuRT’s nature as a coupled RTM and
as a model that incorporates the physical properties of ice,
snow, and water to calculate their IOPs provides the follow-
ing benefits in order to tackle the “forward problem”.

1. There is no need to (i) perform atmospheric correction,
(i) build a BRDF dataset, or (iii) employ angular mod-
eling or anisotropy correction. All of these effects are
implicitly included in the coupled RTM.

2. Because each simulation performed by the coupled
RTM represents a combination of atmosphere and sur-
face conditions and sun—sensor zenith and azimuth an-
gles, a SD can be constructed that is designed to include
(i) the complicated surface and atmosphere conditions

The Cryosphere, 17, 1053-1087, 2023

by varying the optical properties in Table 2 and (ii) the
possible combinations of illumination and viewing ge-
ometries (Table A4).

With a comprehensive SD, we are not restricted to a lin-
ear regression model (as in the direct-estimation method) to
derive the relationship between the spectral radiance at TOA
and the blue-sky albedo at the surface; any reliable SciML
model may be evaluated and compared as long as it is ca-
pable of solving the “inverse problem” (i.e., a regression
model, with albedo being the target and the radiances and
sun—satellite geometry angles being the features).

2.3 Selection of radiance channels for albedo retrieval

With our knowledge of radiative transfer theory and the dif-
ferences in the radiative properties of the constituents in the
coupled atmosphere—surface system, we first chose the input
channels based on the following criteria:

— avoid wavelengths with significant absorption by water
vapor and/or other atmospheric constituents;

— avoid sensor channels that have been found to be satu-
rated in previous sensitivity investigations,

— select wavelengths that, based on their albedo spectra,
can best identify snow cover, bare ice, open water, and
melt pond surface conditions.

With the assistance of the auto-associative neural network
(AANN) technique, channels with a significant reconstruc-
tion error are deemed unsuitable for use as input to the re-
trieval model. More specifically, an AANN is trained using

https://doi.org/10.5194/tc-17-1053-2023
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Table 2. Properties used to compute the inherent optical properties (IOPs) of bare ice, snow-covered ice, open water, melt pond, and aerosol,
which are utilized as inputs to the radiative transfer model (Stamnes et al., 2011).

Type Parameter  Properties  Description
h sea ice thickness
Vor brine pocket volume fraction
Tbr brine pocket radius
Bare ice Xice Vou air bubble volume fraction
Tbr air bubble radius
Joc.i black carbon impurity fractions in ice
Xwater physical properties of the ocean water beneath the sea ice layer
Te effective grain size of snow particles
Ps snow density
. h snow depth
Snow-covered ice  Xspow N P . . . .
foc.s black carbon impurity fractions in snow
Xice physical properties of the sea ice below the snow-covered layer
Xwater physical properties of the ocean water beneath the sea ice layer
hw open-water depth
Ocean water Xwater Sehl chlorophyll a concentration
fcpom colored dissolved organic matter (CDOM) concentration
hm melt pond thickness
Melt pond X melt Xice physical properties of the sea ice below the melt pond layer
Xwat physical properties of the ocean water below the sea ice layer
Aerosol Xaerosol Taero aerosol optical depth in the atmospheric layer

the synthetic data generated by the RTM, which takes as in-
put the three sun—satellite geometry angles, as well as all ra-
diance data that meet the aforementioned requirements, and
outputs all radiances. The trained AANN is believed to have
picked up on the patterns in the RTM-generated dataset. Fol-
lowing that, the AANN is fed the same input features de-
rived from the satellite sensor. We calculate the absolute per-
centage error of the reconstruction output and prune channels
with an error greater than 5 %.

This method is intended to avoid “covariate shift” — a
phrase used in machine learning to refer to the difference be-
tween independent variables in training and real-world data.
Covariate shift is due to either (a) the saturation of certain
satellite channels, which results in a much narrower dynamic
range of radiance data from the satellite sensor (real world)
than that calculated using the RTM (training data), or (b) the
response function and wide wavelength range, which results
in a non-negligible difference between the radiance derived
from the central wavelength and that obtained from the sen-
sor. It has been demonstrated that the AANN technique is
effective in detecting mismatches between data acquired for
the retrieval task and data utilized for training. A recent pa-
per (Fan et al., 2021) discusses how the AANN approach was
used to identify both optimal channels for retrieving ocean
color products using a variety of sensors and the pixels that
are outside the scope of training dataset.

Similar approaches have been used to identify acceptable
channels for albedo retrieval. Table 3 lists the MODIS chan-

https://doi.org/10.5194/tc-17-1053-2023

nels that were utilized to retrieve albedo, as well as the Global
Change Observation Mission — Climate (GCOM-C)/SGLI
channels that were evaluated and eventually employed.?

2.4 Surface classification and cloud filtering

Imperfect cloud screening brings considerable uncertainty to
the retrieved sea ice albedo. To mitigate this uncertainty, pix-
els covered by clouds are detected and removed by a neural-
network-based cloud screening and surface classification al-
gorithm (MLCM) developed by Chen et al. (2018). The
MLCM (short for Machine Learning Classification Mask)
is a threshold-free algorithm trained by extensive radiative
transfer simulations. It can be applied to a great variety of
surface types to provide reliable cloud mask and surface clas-
sification. A comparison between the MLCM and other stan-
dard cloud mask algorithms showed that the MLCM is better
able to detect cloud edges and deal with high solar zenith an-
gles (Chen et al., 2018). Section 3 indicates that the MLCM
can assist in filtering cloud, fog (sea smoke), and hazy atmo-
spheric conditions.

The MLCM is also capable of distinguishing snow-
covered sea ice pixels (with a minimum snow depth of 1 cm)
from bare sea ice pixels. Independent treatment of classifica-
tion and albedo retrieval ensures that even on highly hetero-

20ur team initially discovered the saturation issue in the
673.5nm channel using AANN, submitted the finding to the
GCOM-C/SGLI team, and obtained confirmation of the issue.

The Cryosphere, 17, 1053-1087, 2023
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Table 3. Central wavelengths used by SGLI and MODIS to re-
trieve albedo and obtain cloud and surface classification mask. The
673.5 nm wavelength channel from SGLI was proven to be saturated
and hence was not used to derive albedo.

SGLI channels ‘ MODIS channels
A albedo cloud and A albedo cloud and
(nm) classification | (nm) classification
380 X
443 X X 469 X X
530 X X 555 X X
673.5 X 645 X X
868.5 X X 858.5 X X
1050 X X 1240 X X
1630 X X 1640 X X
2210 X X 2130 X X

geneous surfaces or in conditions where classification of cer-
tain pixels is difficult (e.g., the long-standing difficulty in dis-
tinguishing between slushy mixtures of ice and water, very
thin ice, and melt ponds), the retrieval of their surface albedo
values is unaffected.

2.5 Data

2.5.1 Radiance data from the MODIS and SGLI
sensors

In this study, the level 1B calibrated radiance data (MODO021)
from the MODIS sensor and the infrared scanner (IRS), as
well as the near-infrared radiometer (VNR) on the Second-
generation Global Imager (SGLI, data available at JAXA,
https://gportal.jaxa.jp/gpr/, last access: 18 February 2023),
were employed for albedo retrieval and surface classification.
While only two sensors are discussed, the retrieval method
described in Sect. 2 is generic and applicable to any satel-
lite sensor having suitable radiance data (e.g., the Visible In-
frared Imaging Radiometer Suite, abbreviated as VIIRS).
Central wavelengths used by MODIS and SGLI sensors
to retrieve albedo and obtain a cloud—surface-classification
mask are provided in Table 3. Data in all channels have been
aggregated at a common spatial resolution of 1 km.

2.5.2 Independent validation data

Three campaigns conducted in the Arctic provided broad-
band irradiance data across the Arctic sea ice surface.
They are the ACLOUD (Arctic Cloud Observations Us-
ing Airborne Measurements During Polar Day) campaign
conducted during the 2017 spring—summer transition, the
AFLUX (airborne measurements of radiative and turbulent
FLUXes of energy and momentum in the Arctic boundary
layer) campaign, which took place in April 2019 north of
Svalbard, and the MOSAiIC (Multidisciplinary drifting Ob-
servatory for the Study of Arctic Climate) campaign, which

The Cryosphere, 17, 1053-1087, 2023

was conducted in late August to September 2020 (Wendisch
and Brenguier, 2013; Liipkes, 2017; IASC, 2016).

With the MLCM, we performed cloud filtering and com-
pared the flight transits to the cloud-free area. By calculat-
ing the percentage of cloud coverage (f.) for the match-
ing dates in the latitude—longitude range of flight operations,
only 7d were found to include clear-sky sea ice observa-
tions (fc <90 %), and the flight transits were retained (Ta-
ble 5). Measurements from 2 d during the AFLUX campaign
were partly from clear sky, while the remainder were entirely
from broken clouds (for a description of the AFLUX data,
see Stapf et al., 2021b). The MOSAIC campaign included
fewer than 50 valid data points (Jékel et al., 2021b), all of
which were obtained for broken cloud conditions. To elimi-
nate errors caused by dense cloud cover, MOSAIC data were
omitted from validation.

During the ACLOUD and AFLUX campaigns, the up-
ward and downward irradiance data (0.2-3.6 um) were col-
lected by two pairs of CMP-22 pyranometers (Stapf et al.,
2019, 2021a). The pyranometers operated at a frequency
of 20Hz and were mounted on the Polar 5 (the ACLOUD
campaign used an additional aircraft, Polar 6) research air-
craft. Pre-processing was used to avoid data received dur-
ing high aircraft pitch and roll angles and suspicious equip-
ment frost conditions. Technical details of the pyranometer
are provided by Wendisch and Brenguier (2013). Along with
the pyranometers on Polar 5 and 6, a Spectral Modular Air-
borne Radiation measurement system (“SMART albedome-
ter’”) on Polar 5 measured spectral irradiances between 0.4
and 2.155um at a frequency of 2 Hz during the ACLOUD
campaign (Jikel et al., 2018).

Grobner et al. (2014), Ehrlich et al. (2019) reported that
the pyranometer’s uncertainty was less than 3 %, whereas the
uncertainty of the SMART albedometer was 7 %.

2.5.3 Pre-processing of validation data

The albedo obtained from SciML has the same spatial res-
olution as the geolocation data (MODO03), which is 1km,
whereas the aircraft’s pyranometers and albedometers have
a significantly smaller footprint. As a result, when evaluating
SciML models, the estimated albedo is colocated with the
MODIS grid and the average value of about 170 measure-
ments from each flight is mapped to a single MODIS pixel.
With the MLCM, the pixels with cloud contamination are fil-
tered, and only three surface types were kept in the validation
dataset (i.e., sea ice, snow-covered sea ice, and water).
Finally, while the SciML-derived albedo is valid for sur-
face observations, there may be a bias between it and the
albedo measured at aircraft height. The Polar 5 and Polar 6
aircraft reached 3000 m height during the mission, and the
albedo measurements were therefore influenced by the entire
atmospheric layer below the aircraft, resulting in a signifi-
cant variance in albedo results. To account for the difference
caused by the atmospheric constituents, we used the coupled

https://doi.org/10.5194/tc-17-1053-2023
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RTM (AccuRT) to simulate the albedo of snow, bare ice, melt
pond, and open-water surface at three different levels: surface
(o), low flight level (¢, I = 350 m), and high flight level (o,
h =3000m). Albedo ratios, rj = z—i and rp, = Z‘—*S‘, were cal-
culated to determine the difference in albedo induced by the
atmospheric layer below the flight height.

Figure 2 illustrates the aforementioned spectral and broad-
band albedos, as well as the ratios. There is significant influ-
ence of multiple scattering above the open-water surface due
to atmospheric components, particularly in the visible (VIS)
range; the albedo at 7 = 3000 m is double that on the surface,
whereas the presence of an atmosphere with aerosols results
in a decrease in albedo over a bright surface. Among these,
the reduction is particularly noticeable in the near-infrared
(NIR) band, where air absorption results in a 4 % and 22 %
decrease in albedo at low and high levels, respectively. Sim-
ilar simulation results were found by Jikel et al. (2021a), us-
ing the Two-Stream Radiative Transfer in Snow (TARTES)
model (Libois et al., 2013). As can be observed, the dif-
ference between low-level and surface albedo is less than
5 %, whereas the difference between high-level and low-level
albedo is significantly greater. As a result, we did not use air-
craft observations taken above 350 m in order to improve the
validation of the “surface” albedo retrieval.

In all, the selected flight sections are depicted in Fig. 3.
Up to four satellite images per day could be employed for re-
trieval and evaluation in the polar regions. The MODIS tran-
sits that correspond to the aircraft operation time and f; are
listed in Table 5.

2.5.4 Comparison data

The retrieval results from RTM-SciML models are compared
to the currently operational albedo retrieval products listed in
Table 1.

— MODIS MCD43D. The 1 km spatial resolution MODIS
MCD43D products are the successors to the MCD43B
products. The retrievals are performed daily using ker-
nel weights that best represent the majority of situa-
tions across the 16 d period, with the day of interest em-
phasized. MCD43D49-51 corresponds to the black-sky
albedo (BSA) for the visible (0.3-0.7 um, VIS), near-
infrared (0.7-5.0 um, NIR), and shortwave (0.3-5.0 um,
SW) bands, while MCD43D59-61 corresponds to the
white sky albedo (WSA) for the three broadband ranges
(Schaaf and Wang, 2015b).

— MERIS MPF V1.5 and OLCI MPF V1.5. Istomina et al.
(2015); Istomina (2020) developed two albedo retrieval
products, utilizing MERIS data from Envisat-1 and
Ocean and Land Colour Instrument (OLCI) data from
Sentinel-3, respectively. The MERIS sensor was only
operational from 2002 to 2012, and the OLCI prod-
uct is the successor to the MERIS-albedo product (Is-
tomina, 2020); both products are based on the MPD
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algorithm proposed by Zege et al. (2015). Daily re-
trieval data are gridded onto a polar stereographic grid
with a 12.5 km resolution (the National Snow and Ice
Data Center, NSIDC, grid). In Istomina et al. (2015),
the MERIS-albedo product was evaluated by compar-
ing the estimated albedo values to aerial measurements
from the MELTEX campaign. Landfast ice showed the
best agreement, with an R-squared value of 0.84 and an
RMSE of 0.068 for 169 matched pixels.

— GLASS (AVHRR) and GLASS (MODIS). Global Land
Surface Satellite (GLASS) products are primarily de-
rived from NASA’s Advanced Very High Resolu-
tion Radiometer (AVHRR) long-term data record and
MODIS data, together with other satellite data and aux-
iliary information (Liang et al., 2021). The sea ice
surface albedo in GLASS is derived using the direct-
estimation algorithm (Qu et al., 2016); a spatiotemporal
filtering algorithm Liu et al. (2013) is utilized to pro-
vide gap-free albedo with an 8d temporal resolution.
The spatial resolution of GLASS-albedo retrieved from
the AVHRR sensor is 0.05° and from MODIS sensor is
1 km. In Qu et al. (2016), the GLASS (MODIS) prod-
uct was compared to Tara polar ocean expedition mea-
surements. During the 90d expedition, the daily aver-
age albedo from cruise measurements with around 50
matched retrieval-measurement data points yielded an
R? value of 0.67.

— VIIRS L3-SURFALB. Peng et al. (2018) improved the
direct-estimation method for sea ice retrieval proposed
by Qu et al. (2016) and made it applicable to the VI-
IRS. The BRDF in Qu et al. (2016) is a weighted aver-
age of sea ice, snow-covered ice, and open water, with
melt pond conditions omitted. In Peng et al. (2018), all
four surface conditions are evaluated and the MPD algo-
rithm is used to derive the BRDF of melt pond. The VI-
IRS surface albedo (SURFALB) product has been vali-
dated using ground truth from the Greenland Ice Sheet
and snow-covered land (Peng et al., 2018). Note that the
validation data are not applicable to the highly fluctuat-
ing sea ice surface; sea ice refers to a floating sheet of
ice formed from ocean water, which might be covered
by melt ponds or snow during its life cycle. The spatial
resolution of both the SURFALB level 2 (L2) granule
product and the level 3 (L3) gridded product is 1km,
and the L3 data are used for comparison in this study.

When computing the statistical values (albedo, Pearson r,
mean, etc.), the RTM—-SciML retrievals are regridded to the
same spatial and temporal resolution as their counterparts
(e.g., 12.5 km for OLCI/MERIS and 8 d average for GLASS),
and if matching validation data are available, the flight mea-
surements are likewise rescaled to the same grids. In retrieval
map figures, data are represented with their original spatial
resolution. The CLARA-SAL (Karlsson et al., 2012, 2017)
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Figure 3. ACLOUD and AFLUX transits of selected flight seg-
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25 June 2017 is shown in the background. MODIS channels 645,
555, and 469 nm are used as (R, G, B) bands for the true-color
RGB. The dates of flight operations are denoted by hues defined
by the color bar on the right.

and APP-x (Key et al., 2016) albedo products produced from
the AVHRR sensor are also provided for reference.

2.6 Scientific machine learning (SciML) model
Neural network models, specifically models with the multi-
layer artificial neural network (MLANN) structure, have

been demonstrated to be useful for retrieving and estimat-
ing snow and sea ice parameters. Successful implementations
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include the sea ice and snow thickness retrievals using mi-
crowave data (Herbert et al., 2021; Hu et al., 2021; Zhu et al.,
2021; Wang et al., 2020; Braakmann-Folgmann and Donlon,
2019; Lee et al., 2019; Tedesco and Jeyaratnam, 2016; Cao
et al., 2008; Tedesco et al., 2004), and sea ice concentration
(SIC) or melt pond fraction (MPF) retrievals using radiance
or reflectance data (Chi et al., 2019; Karvonen, 2017; Rosel
and Kaleschke, 2012).

A MLANN’s computational unit is a neuron (alternatively
called a perceptron), which is organized in a network topol-
ogy. A set of functions fj(x;w;,b;) connected in a chain
can be used to describe the architecture of a fully connected
neural network with n layers in total (including the input and
output layers):

F(y)=fa (.. f3(f2(/i(x) xwi+b1) xwr+b2)...). (D

The previous layer’s output is transformed by f; (x) xw;+
b;, and then an activation function f;; (which is typically
non-linear) is applied to perform an element-wise operation.

Generally, as the network grows deeper, the features be-
come more abstract and complicated, as each succeeding
layer is constructed from the already transformed features of
the prior layer (LeCun et al., 2015). The network’s n — 2 hid-
den layers enable it to describe nonlinear relations between
the independent and dependent variables (x, y). The matri-
ces w; define the weights for linear transformations between
layers, whereas the vectors b; define the biases. The final
layer (output layer) has three neurons encoding the predicted
albedo values (&Vls, &NIR’ &sw).

Neural network models with different configurations are
trained using 80 % of the SD, and the portion of the SD that
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was not included in the network training process was held
out for validation (the “out-of-sample validation” step shown
in Fig. 1). To obtain an efficient MLANN, both the network
structure’s topology and hyperparameters should be tweaked
properly.

A stochastic gradient descent (SGD) optimization is used
to update the weights and biases in an MLANN during back-
propagation. To perform the SGD, the adaptive moment esti-
mation (Adam, Kingma and Ba, 2014) was chosen, which
trains the models in 200 epochs with a batch size of 64.
A MLANN’s hyperparameters include the learning rate and
the activation function. To determine the optimal learning
rate, Bayesian optimization was employed (Brochu et al.,
2010), and the rectified linear units (ReLU, Nair and Hin-
ton, 2010) were used as the activation function in the hidden
layers. Batch normalization (Ioffe and Szegedy, 2015) is per-
formed to enhance the MLANN’s generalization capabilities
and make the network less sensitive to random initialization
of the weights and biases (Santurkar et al., 2019). To avoid
overfitting, dropout layers (Srivastava et al., 2014) were in-
cluded as a regularization for networks with more than two
hidden layers. In our evaluation, dropout layers with a rate of
0.2 were found to be optimal, implying that one in every five
inputs is randomly eliminated from each update cycle.

The network structure with three hidden layers was shown
to perform well when evaluated using the hold-out dataset
(the 20 % of SD).? Furthermore, when these MLANNS were
applied to the MODIS sensor, the distributions of their re-
trieval results were very comparable (see Fig. B1b). Con-
sequently, the “winning model” was determined by com-
paring the retrieval results of each candidate against inde-
pendent validation data. The independent validation data for
the MODIS sensor were derived from pyranometer measure-
ments described in Sect. 2.5.2, and 4000 entries were sam-
pled from the total dataset (N = 7964). The 16 x 10 x 8 net-
work topology demonstrated a slight overall performance ad-
vantage (Table B1). 4 The final retrieval model for the SGLI

3A deeper structure was also tested, but the error from a net-
work with more than three hidden layers doubles. Liu et al. (2019)
and Rosel et al. (2012) previously employed fewer neurons in each
layer (no more than 15) and assigned the first hidden layer the same
number of neurons as the feature input, in the hope that after the
model training, each neuron represents exactly one satellite chan-
nel or one of the geometry angles (i.e., “semantics” in deep learn-
ing). However, there is no guarantee that these input—neuron rela-
tions will remain one-to-one during actual neural network training.
In fact, the back-propagation process combines all of the inputs in
the “x” operation (the so-called “non-locality” effect).

4This N = 4000 is a subset of the data shown in Fig. 4d. How-
ever, note that the MLANNs with three hidden layers showed highly
comparable performance on this independent validation data (see
Table B1 and Fig. Bla). This stage is performed solely for the
purpose of selecting an MLANN model that supports discussions
throughout the paper (as it is infeasible to include all the enlisted
MLANN:Ss for comprehensive comparisons with the other retrieval
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sensor was determined by comparing the R* of SGLI and
MODIS retrieval results from the same day .

As a final note, the SMART albedometer measures within
a narrower irradiance range (as compared to pyranometer).
Therefore, a separate MLANN model was trained utilizing
broadband albedo from different ranges (i.e., modifying the
irradiance ranges of the SD in the “integrate” stage of Fig. 1).
The difference in wavelength range is summarized in Ta-
ble 4. Throughout the text, the two models are discussed sep-
arately: (a)—(c) of Figs. 4 and 9, as well as Fig. 7a, are broad-
band albedo values with adjusted ranges, while the remainder
of the discussion pertains to the 300-2500 nm broadband.®

3 Validation
3.1 Validation of MODIS-retrievals

Polar-orbiting satellites transit the two polar areas up to four
times per day, and cloud-free retrievals from all transits (Ta-
ble 5) are used to compare with the independent validation
data measured on Polar 5 and Polar 6 aircraft. Due to the
absence of a time constraint on the retrieval data, a single
gridded airplane measurement can match many satellite re-
trievals.

Figure 4 indicates that the RTM—-SciML retrieval method
is capable of producing satisfactory albedo outputs with low
errors and high Pearson r coefficients. The agreement be-
tween the retrieved shortwave albedo and the pyranometer-
measured albedo is better than with the albedometer; the re-
gression line (marked in red) connecting the pyranometer-
measured albedo and the retrieval almost completely over-
laps the (0,1) line, indicating a perfect one-to-one correspon-
dence. Note that due to the addition of data from two air-
craft during the ACLOUD campaign and two flights from the
AFLUX campaign, the acquired pyranometer data are twice

methods). The authors also evaluated various machine learning
(ML) models; nonetheless, the loss on hold-out dataset was larger
for all ML models than for the MLANN models. Figure Blc—d il-
lustrates how this “underperformance” impacts final retrievals when
these models are applied to MODIS images.

5The SGLI on GCOM-C was launched in late 2017. The data
included in Fig. 5 are, to our knowledge, the only cloud-free valida-
tion data during its operational periods. Therefore, retrieval results
from MODIS of the same date were utilized as a benchmark to se-
lect a retrieval model for the SGLI sensor, taking advantage of the
fact that the observation by MODIS and by SGLI are only 15 min
apart.

6Although Model 1 was trained using irradiance in the wave-
length range of 0.3 to 2.5 um rather than the pyranometer’s 0.2 to
3.6 um range, we would expect a small deviation due to the wave-
length range difference because there is virtually no radiation reach-
ing the surface of the Earth for wavelengths shorter than 0.3 um due
to ozone absorption in the stratosphere and because the contribution
to the albedo for wavelengths longer than 2.5 um is negligible.
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Table 4. Difference between the wavelength ranges of the retrievals from the two MLANN models. The validation of retrieval results are

shown in Figs. 3 and 6 and Table A2.

Model 1

\ Model 2

A range (nm)

validation data ‘ A range (nm)

validation data

Visible 300-700 - 400-700 albedometer
Near infrared  700-2500 - 700-2100 albedometer
Shortwave 300-2500 pyranometer 400-2100 albedometer

Table 5. Time stamps for airborne observations, satellite overflights in UTC, and cloud pixel percentages in the latitude—longitude ranges of
aircraft during the ACLOUD and AFLUX campaigns (77.8-82.4° N, and —0.25-20.5° E). Note that days with only broken-cloud observa-

tions (cloud coverage greater than 90 %) are not included in the table.

Date Polar 5 Polar 6 MODIS Sfeloud (%)
31 May 2017 15:05-18:57  14:59-19:03  14:30, 16:05, 17:45 31.35%
8 June 2017 07:36-12:51  07:30-12:20  12:00, 13:40, 15:15 74.37 %
11:00, 12:40
18 June 2017  12:03-17:55  12:25-17:50 14:15, 15:55 82.69 %
11:05, 12:45 28.06 %
25 June 2017  11:09-17:11  11:03-16:56 14:20. 16:00
11:50, 13:25 33.74 %
26 June 2017  12:34-15:17  12:32-14:48 15:05. 16:40
8 April 2019 09:11-13:50 - 11:30, 13:10 46.52 %
11 April 2019  09:42-12:46 - 12:00, 13:40 81.12%

as extensive as the albedometer measurements (7964 versus
3936).

The highest inaccuracy of retrieval occurs in the near-
infrared band: around 15 % over-estimation for bare sea ice
and snow-covered ice pixels. Apart from the larger positive
bias inherent in the SciML algorithm (as compared to the vis-
ible band), the disparity in NIR values could be partly caused
by the measurement uncertainty; the albedometer’s overall
uncertainty in the near-infrared wavelength band is reported
to be the greatest (Jikel et al., 2021a). It is also worth not-
ing that even though the comparison is confined to low-level
(<350 m) flight measurements, there is still a non-negligible
height-induced error in the NIR values (refer to the RTM
simulation findings in Fig. 2): on snow-covered sea ice, the
error is —4 % (lower than the surface), which increases the
gap between the retrieval (of ground) and the measurements
(of low-altitudes). For open water, the near-infrared albedo
at350m is +16 %.

Overall, as illustrated in Fig. B2, the correlation coeffi-
cients for snow-covered ice and open water are relatively
high across the wavelength ranges (r =0.75 and r = 0.81,
respectively), whereas the correlation coefficients for bare
sea ice and ice with melt pond coverage are lower (r = 0.54).
The reason is that in contrast to the more stable glacier, sea
ice is more variable. For the days covered, the mean time dis-
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crepancy between MODIS transit and flight measurements is
about 2 h, with a maximum time difference of 3-5h (4, 4.85,
and 3 h for 31 May, 8 June, and 25 June, respectively).

When a time window of 1.5 h was used for time restriction,
a greater degree of agreement and smaller error was found;
evaluating against pyranometer data (N = 4144) reveals r of
0.92 and RMSE of 0.094 for the shortwave albedo retrieval
(Model 1), and evaluating with albedometer data (N = 1225)
shows r 0f 0.93, 0.89, 0.92 and RMSE of 0.069, 0.143, 0.085,
in the visible, near-infrared, and shortwave bands, respec-
tively (Model 2).

In our most recent work, the RTM-SciML retrievals from
the MODIS sensor in the Okhotsk region between 2002 and
2014 are validated using Soya icebreaker data. With a 1h
time window (N = 359), the RMSE is 0.097, and with a 3h
time window (N =911), the RMSE is 0.11.

3.2 Validation of SGLI retrievals

Frequently, fog (sea smoke) forms above sea ice and
polynyas (Vihma et al., 2014). On 8 April 2019, data taken
south of 80.6°N were in such a condition. On 11 April,
a thick cloud with a sharp edge moved from 15°E at
05:50 UTC to 7°E at 12:25UTC (Stapf et al., 2021b). As
seen in the RGB and surface classification images (Fig. 5),
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15 % error range.

the fog from 8 April and the cloud from 11 April was cor-
rectly identified by the MLCM for both sensors.

On 11 April, the cloud-free area was seen to have a hazy
atmosphere (Stapf et al., 2021b), and RTM models showed
a thick aerosol optical depth of 0.065 (wavelength unspec-
ified). The MLCM also detected the haze, which was clas-
sified in Fig. 5 as “cloud/fog”. Figure 5 indicates that, even
with the impact of cloud, fog, or hazy atmosphere, the SGLI-
and MODIS-retrieved albedo values («) for different surface
types are within reasonable ranges: melt pond (o < 0.3), bare
sea ice (o ~0.6), and sea ice with snow coverage (o > 0.7).
When compared to data from low-level (<350 m) aircraft
at the same location and to cloud-free MODIS retrievals
(Fig. 5), the values are largely consistent.

The scatter plot in Fig. 6 illustrates the correlation between
the measured and retrieved albedo (under clear-sky condi-
tions on 8 April) using SGLI-channel and MODIS-channel
radiances. Both results were derived with the same retrieval
methods as those outlined in Sect. 2. For retrievals using
SGLI data, 82 % of the data were under the 15 % expected
error (EE), demonstrating a higher degree of agreement than
the results produced from MODIS radiance data for this date.
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Correlation coefficients of 0.984 and 0.892, as well as RMSE
of 0.082 and 0.136, indicate that RTM-SciML models can
produce satisfactory results for cryosphere surface albedo re-
trieval.

4 Discussion on the source of validation error

Independent of the surface type or spectral range, all of
the evaluations outlined above are prone to uncertainty due
to equipment error, cloud contamination, surface metamor-
phism (drift and melt or refreeze), and differences in obser-
vation height, footprint, and solar zenith angle (SZA).

In the following discussion, we will break down and an-
alyze the errors by their sources. The data were subjected
to a more stringent temporal constraint of §; = 1.5h in or-
der to allow for a more precise characterization of specific
sources of inaccuracy. Figure 7 depicts the percentage differ-
ence between the observed and retrieved shortwave albedo
when a maximum time difference between aircraft and satel-
lite of 1.5h is allowed. Still, the percentage difference be-
tween the RTM-SciML estimated values and pyranometer
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measurements are smaller than those with albedometer mea-
surements. Meanwhile, the error for the open-water surface
(flight segments within the dashed red line) is significantly
larger when compared to the albedometer data than when
compared to the pyranometer data.

4.1 Distinction in the footprint of observation

When aircraft measurements are up-scaled to MODIS foot-
prints, around 170 aircraft measurements were taken to
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match one satellite pixel. According to prior research, an
albedo line 100 m long surrounding melt ponds would have
a standard deviation of roughly 0.4 (Perovich, 2002), while
the albedo of thin ice inside a grid cell would have a stan-
dard deviation of up to 0.29 (Lindsay, 2001). Due to the fact
that measurements along the aircraft transit do not accurately
reflect the area’s average albedo (as determined by satellite
sensors), the uncertainty introduced by different observation
footprints (i.e., subpixel effects) is not negligible but difficult
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Figure 7. A map illustrating the percentage difference between the RTM—-SciML estimated broadband albedo and the albedo measured
in situ using (a) the “SMART” albedometer and (b) the pyranometer. To choose the matching MODIS retrieval, a tight time constraint of

1.5h (8; < 1.5h) was applied. On the right, the color bar indicates the scale of the percentage difference value for each pixel (£ ;y -100 %).
Additionally, dashed red and blue lines represent the 200 and 1000 m isobaths, respectively. Each flight segment’s dates are listed in Fig. 3.

to quantify. On a homogeneous surface such as fresh snow,
subpixel effects could be small, but for the heterogeneous
surface consisting of a snow—ice—water mixture, the influ-
ence is large.

4.2 Cloud contamination effects

While cloud screening eliminates cloudy pixels in satellite
data, data acquired during airplane flights are not corrected
for cloud cover. Given that more than one-third of the op-
erational spatial range is obscured by clouds, it is possible
that some pixels labeled as “clear sky” by the MLCM are
cloud-contaminated pixels as a result of (i) a time mismatch
between the MODIS overpass and aircraft data collection or
(i1) simply imperfect cloud screening. Multiple reflections
between the surface and cloud base would introduce uncer-
tainty into the albedo measured by the airplane.

As illustrated in Fig. 8, the agreement is negatively corre-
lated with cloud coverage, with the exception of Fig. 8b. On
8 June 2017, the date depicted in panel Fig. 8b, a consider-
able decrease in temperature and an increase in liquid water
vapor (IWV) were recorded (Wendisch et al., 2019). Follow-
ing a day of dense cloud cover, the surface temperature mea-
sured on ice floe camps increased by 2° on 10 June 2017
(Barrientos Velasco et al., 2018). A Magna probe (Sturm and
Holmgren, 2018) recorded that snow depths on the ice floe
on 14 June were down to 22 + 18 cm (with 32 % of data be-
low 10 cm), while on 5 June the snow depth was 37 24 cm
(with 9 % of data below 10cm) (Jikel et al., 2019). These
data indicate that the surface conditions changed radically
around 8 June, which possibly led to the larger root-mean-
square error (RMSE of 0.149). The RMSE:s are all minor on
the 3d with significantly less cloud cover (Fig. 8a, d, and
e). The best agreement occurs on 25 June, when an analy-
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sis of 2245 accessible MODIS pixels reveals an error of only
0.066; 96 % of the data are within an error of 15 %.

The spatial overlay of observations from 25 June 2017
on a retrieval image utilizing MODIS’s 12:45 UTC transit is
shown in Fig. 9. Snow-covered ice, open water, and bare-
ice albedo values are all within acceptable limits and are in
good agreement with albedometer and pyranometer determi-
nations.

4.3 Albedo variations caused by changes in the solar
zenith angle

Fortunately, the latitude—longitude range experienced clear
skies for 3 consecutive days during the campaign, i.e., from
24 to 26 June 2017. The data from four MODIS overflights
per day (see Table 5) can be used to determine changes in
surface albedo caused by changes in solar zenith angle and
surface metamorphism.

Visual examination of the RGB images of the eight
MODIS transits from 24 to 25 June revealed no apparent ice
drift during the 2 d (refer to the accompanying GIF image in
the Supplement). Following this, we employed the MLCM to
filter out cloud-contaminated regions during any of the four
MODIS transits on 25 June. In other words, assuming there
is no ice drift, the changes in albedo value over the period of
four satellite transits are due to either surface metamorphism
or a shifting solar zenith angle.

The probability density functions (PDFs) of the surface
albedo in the region shown in Fig. 9 were produced using
the selected data (Fig. 10a). A Gaussian kernel probability
density (Turlach, 1993) was used to estimate the PDF. The
probability of albedo values falling within the interval P(a <
x < b) is measured by subtracting the two integral values
Pla <x <b)=F(b) — Fx(a) = fabf(x)dx, where F(x) is
the cumulative density function (CDF) and f(x) is the PDF.
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The area between the PDF curve and the x axis is equal to 1
(Scott, 2015). The bimodal distribution with one mode at 0.1
and the other at 0.65 indicates that the most prevalent sur-
face types are water and snow-covered sea ice, with bare ice
accounting for a small portion of the data.

We noted the difference in SZA over the four MODIS tran-
sits, from 55-59 at 11:05 UTC to a higher value of 61-65 at
16:00 UTC, and the difference increased the albedo for snow
and water by 6 % and 30 %, respectively, while the values on
the bare-ice surface remained relatively stable (5 % fluctua-
tions).

The variations in albedo caused by increasing SZA were
investigated in RTM simulations (see the inset table in
Fig. 10b). The relevant parameters for the simulation are
snow thickness (hs = 0.2m), effective grain size of snow
(re = 100 um), pond depth (A, = 0.1 m), and black carbon
impurity fractions for snow and ice (fpc = 1.0 x 1077). Al-
though the difference in broadband albedo values indicates
that the snow, ice, and water conditions in the RTM simu-
lations do not match the surface conditions at this location,
they may serve as a reference for the portion of the albedo
difference caused by SZA, which is 2.7 %, 50 %, and 4 %
for snow-covered ice, water, and bare ice, respectively. With
these numbers in mind, we can conclude that the lower vari-
ance in snow and ice surface albedo (despite increasing SZA)
and the less noticeable increase in water albedo are both re-
lated to surface melting.
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4.4 Changes in albedo as a result of surface
metamorphism

To analyze the fluctuation in albedo caused by surface meta-
morphism (intra-daily variation due to snow melting, pond
development, or pond drainage), we picked the “consistently
clear” latitude—longitude coordinates throughout the eight
MODIS overflights over a 2d period. The pixels that have
been filtered out due to cloud cover happen to be snow cases.
As a result, the following analysis focuses on the phase tran-
sitions at the marginal sea ice zone, which is a system com-
posed of bare ice thicker than 30 cm (typical albedo values
between 0.4 and 0.5, Brandt et al., 2005; Petrich and Eicken,
2009), melt ponds (typical albedo values between 0.2-0.4,
Grenfell and Maykut, 1977; Grenfell and Perovich, 1984;
Grenfell, 2004; Petrich and Eicken, 2009), and open water
(typical albedo below 0.2, Toyota et al., 1999; Petrich and
Eicken, 2009).

Figure 11 depicts the distribution of albedo values at the
eight MODIS overflights. Comparing the distributions of a2
and aps at the same SZA (i.e., the first two columns of
Fig. 11), the histograms appear to have a similar shape. How-
ever, the change in albedo at a fixed location over about 24 h
(A, the third column of Fig. 11) can be as significant as 0.4.
As no apparent ice drift was observed and the location was
at the intersection between open-water and sea ice regions,
this circumstance indicates that the surface was undergoing
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intermittent melting and refreezing, akin to the situation of a
polynya.

To summarize, in Sects. 3—4, we evaluated the RTM—
SciML retrieval results using in situ measurements. The un-
certainties associated with the evaluation were explained in
detail (per source of error) in order to evaluate their impact.
Despite these uncertainties, the current technique for albedo
retrieval, which is based on (1) an AccuRT-generated SD and
(2) a SciML model trained using the SD as prior knowledge,
can indeed produce reasonable albedo outputs, with a RMSE
of 0.094 evaluated on over 4000 pyranometer measurements
under clear-sky conditions.

5 Comparison of RTM-SciML retrievals with the
existing methods

In this section, the RTM-SciML albedo retrievals are com-
pared with the products listed in Table 1. A brief descrip-
tion of the relevant products and sensors are provided in
Sect. 2.5.4.

5.1 Comparison with the MCD43D49 ~51 BSA
products

MODIS MCD43 is a land albedo product; only a small
amount of sea ice surface albedo is available near the shore
(in the “shallow ocean” zone denoted by the BRDF/Albedo
Quality Product, MCD43A2, Schaaf and Wang, 2015a).
While prior research has validated the albedo product for
glacier, tundra, and snow-covered land surfaces, the small
amount of sea ice albedo on the shallow ocean has not been
validated previously (Ren et al., 2021; An et al., 2020; Pope
et al., 2016; Wang et al., 2012). Using ACLOUD-campaign
measurements, the MCD43’s reliability in the sea ice zone
may be assessed.

On the same days, Figs. 12 and 13 compare the RTM—
SciML-derived broadband albedo values utilizing MODIS
TOA radiances (i.e., MOD021KM) as input to the MCD43-
derived BSAs. The RTM-SciML-derived albedo values rep-
resent the average of all available clear-sky pixels observed
across four MODIS transits within the day, whereas the
MCD43 product is representative of the albedo at local noon
(Stroeve et al., 2005). Therefore, values from the MCD43
product are expected to be slightly lower than the RTM—
SciML results due to the relatively low solar zenith angle
(52-55°). We need to highlight that the two comparisons
are made at different wavelengths (the NIR and SW upper
bounds for RTM-SciML and MCD43 albedo are 2.8 and
5 um, respectively) and with different albedo assumptions
(blue-sky and black-sky albedo for RTM-SciML albedo and
MCDA43 albedo, respectively). All albedo maps include su-
perimposed SMART albedometer measurements from the
ACLOUD campaign (Jikel et al., 2018) as a reference. Note
that the flight segments that overlapped with MCD43D re-
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trievals in Fig. 12 were at an altitude of 4 > 2500 m, indi-
cating that the validation data on open-water surfaces have
a 33-150 % positive bias relative to the surface albedo val-
ues; the biases for bare-ice and snow-covered ice surfaces
are —10 to —7 % and —22 to —8 %, respectively (see flight
heights in Fig. 9e and the height-induced bias in Fig. 2).

Because the BRDF is calculated using observations from
a 16 d window, the MCD43 result cannot adequately capture
daily albedo variations. One example is its failure to detect
the opening of a melt pond north of Svalbard on 25 and
26 June, located at 80° N, 15° E. According to the eight RGB
MODIS transit images (not shown), the melt pond began to
open at 12:45 UTC on 25 June 2017, and by 15:05UTC on
26 June 2017 the ice underlying the pond had entirely melted,
leaving some bare sea ice (as categorized by the MLCM) sur-
rounding the open water. While MCD43 could not identify
this opening, the daily averaged RTM-SciML albedo indi-
cates the snow and ice melting that resulted in the formation
of a small open-water region.

Another point to emphasize is the lower albedo values
obtained by MCD43 on snow-covered ice when compared
to the RTM-SciML results, as demonstrated by the areas
north and south of Nordaustlandet (near 80.5° N, 22.5° E and
78.5° N, 25° E, respectively). While there are no direct mea-
surements to verify these values, we note that the underesti-
mation of snow-covered area has been mentioned in several
previous studies. For example, Stroeve et al. (2005) discov-
ered that the MCD43 retrieval for snow-covered Greenland
Ice Sheet (with an albedo greater than 0.7) has a —0.05 bias
when compared to ground-based measurements. Similarly,
An et al. (2020) observed underestimation when the albedo
is greater than 0.4 for ice caps. For the particular case ob-
served on these 2 d, the main reason is the extensive melting
during the warm period (Knudsen et al., 2018).

Although the MCD43D V6.0 products have been adjusted
to better capture shorter-term albedo variations through ad-
justing the BRDF weighting scheme to emphasize the BRDF
of the day of interest inside the 16d sliding window, by
examining the quality product (i.e., MCD43A2), we found
a much higher “BRDF albedo uncertainty” marked in the
melting-snow areas as compared to the surrounding open wa-
ter. According to Lucht and Lewis (2000), Wang et al. (2012),
the uncertainty can be related to fluctuations in surface prop-
erties, atmospheric correction errors, high solar zenith angle
(> 65°), and cloud detection during snow melt (among oth-
ers). Figure 14 and Table B3 provide an approximation of
the bias imparted by such uncertainty to sea ice albedo: com-
pared to the “ground truths”, the MCD43D retrievals on open
water and melt pond are significantly lower, and compared to
the RTM-SciML retrievals at the same pixel the MCD43D
snow retrievals are more dispersed.

https://doi.org/10.5194/tc-17-1053-2023



Y. Zhou et al.: A sensor-agnostic sea ice albedo retrieval method 1069

L [fune-24 10:25 [fune-25 11:05 A, morning

o

o4t

ISl

3

g

S 2r

—

5]

2V : :
0.1 02 03 04 05 06 07 08 09 1.0 0.1 02 03 04 05 06 07 08 09 1.0 —-04 -03 -02 -0.1 00 01 02 03 04

8 6June-24 12:00 [fune-25 12:45 AR Ay noon

o

o4t

Il

3

g

S 2f

—~

5]

A gl S ! . .
0.1 02 03 04 05 06 07 08 09 1.0 0.1 02 03 04 05 06 07 08 09 10 -04 -03 -02 -0.1 00 01 02 03 04

(o 6June-24 13:40 June-25 14:20 A, early afternoon

<

o

o4t

Il

3

g

o 2f

o

5]

Ao
0.1 02 03 04 05 06 07 08 09 1.0 0.1 02 03 04 05 06 07 08 09 10 -04 -03 -02 -0.1 00 01 02 03 04

(g 6{june-24 15:15 June-25 16:00 A, Tate afternoon

<

o

D4t

Il

3

g

o 2f

o

)

=9

o

01 02 03 04 05 06 07 08 09 1.0
Shortwave Albedo

01 02 03 04 05 06 07 0.8 09 1.0 04 —-03 -02 —01 00 01 02 03 04
Shortwave Albedo

Change in albedo(ajune2s — @june24)

Figure 11. Histogram of the distribution of albedo values observed during the eight MODIS overflights on 24-25 June. The albedo histograms
for 24 June (ap4) and 25 June (ao5) and the difference (Ay = ap5 — ap4) are shown in the columns from left to right. From top to bottom,
the rows represent the four satellite overpasses that occurred throughout the day: in the morning, at midday, in the early afternoon, and in the

late afternoon.

5.2 Comparison with the MERIS-albedo product

Figure 15 compares the retrieval results obtained using the
MERIS and RTM-SciML albedo retrieval algorithms during
a 5d period in 2007 between DOY 166 and 170. Addition-
ally, the albedo values from CLARA-SAL product (Karlsson
et al., 2012) and the melt pond fraction (Istomina et al., 2015)
are given as a reference.

The challenge of using the MPD algorithm to retrieve
albedo is that the algorithm relies on certain empirically de-
rived criteria (based on ratios of some radiance channels) to
determine the exact type and composition of the correspond-
ing pixel in order to assign an appropriate BRDF value for
the valid or filling value for invalid observations. Since the
assigned BRDF is used to derive albedo, the surface type
was explicitly designated prior to albedo estimation. More-
over, the spectral reflection coefficients for the melt pond and
thin ice boundaries, as well as the thick ice and snow cover
boundaries, are manually adjusted based on the surface con-
dition. Therefore, there are greater uncertainties in the re-
trieval during the transitional seasons of spring—summer and
summer—autumn, as well as when the surface is highly het-
erogeneous (low sea ice concentration, discussed in Istomina
et al., 2015); misclassification or improper manual assign-
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ment would result in a considerable uncertainty in the final
albedo estimate.

As shown in Fig. 16, the two algorithms produce more
consistent results for regions with low melt pond fraction,
JSmp, 1.€., high sea ice concentration, fj;c; the average albedo
values are similar when fipr < 30. However, the MERIS-
derived albedo values in regions with large fmpr values
(fmpt > 40 %) appear to be higher than those produced by
the RTM-SciML model. Grenfell and Maykut (1977) de-
rived a linear relation between fipr and the surface albedo
(or), which is represented by the red lines in Fig. 16. Toyota
et al. (1999) found a linear relation between ice concentra-
tion and albedo. In the absence of leads, the sea ice concen-
tration and melt pond fraction has a fsic + fmpr = 1 relation.
The shaded blue area and blue lines in Fig. 16 denote the
JSmpt — « relation derived by Toyota et al.. Similarly, Petrich
and Eicken (2009) reported reference albedo values of > 0.6
and < 0.5, respectively, for sea ice with 10 % and 50 % areal
pond coverage. The sea ice albedo values produced by the
RTM-SciML model correspond more closely to the refer-
ence values obtained by Toyota et al. (1999), Grenfell and
Maykut (1977), and Petrich and Eicken (2009), whereas the
values retrieved by the MPD algorithm are overestimated.

Another difference to note is the empty areas in Fig. 15.
Chen et al. (2018) and Fan et al. (2021) demonstrated that the
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Figure 12. Albedo retrieval maps on 25 June 2017 in the shallow-ocean region near Svalbard. The albedometer measurements from the
ACLOUD campaign are superimposed over the retrieval maps in each panel. Note that both low- and high-level flight measurements are
included. (a—c) The visible, near-infrared, and shortwave (VIS, NIR, SW) albedo values derived using the RTM-SciML-albedo product and
MODIS radiance data. (d—f) The three broadband black-sky albedo values (BSAs) derived by MCD43D49-51. The empty regions in panels
(a) to (c) correspond to cloud coverage throughout the day on 25 June 2017, whereas the empty regions in panels (d) to (f) correspond to
ocean areas where MCD43 does not provide retrievals.
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Figure 13. Albedo retrieval maps similar to Fig. 12 but on 26 June 2017.
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Figure 14. Correlation between satellite retrievals and ACLOUD albedo measurements utilizing three retrieval methods. (f-h) MCD43D
albedo in the visible, near-infrared, and shortwave broadband compared to albedometer measurements; (i) MCD43D shortwave albedo
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MLCM model we used for cloud filtering is more strict than
the MODIS cloud filtering algorithm and is capable of iden-
tifying very thin cloud (and even fog; see Sect. 3) on bright
surfaces such as snow and ice. The empty areas in Fig. 15¢
and d are MLCM-identified thin cloud pixels, whereas the
empty areas in Fig. 15e through h represent open-water ar-
eas that were not processed by the MPD algorithm (Istomina
et al., 2015).

5.3 Comparison with the OLCI-albedo product

Figure 17 depicts OLCI and RTM—-SciML albedo retrievals
on 24 and 26 June 2017. Additionally, broadband albedo val-
ues obtained using pyranometers Stapf et al. (2019) are dis-
played on top of the RGB images as reference.

In the MPD algorithm, the type of ice used to calculate the
ice-BRDF is referred to as “white ice” (Zege et al., 2015),
which forms when meltwater drains intermittently from sea
ice and has a few centimeters thick white coating that scat-
ters light similarly to a thin snow layer (Grenfell and Warren,
1999; Tschudi et al., 2008).

Due to the logic of the underlying MPD algorithm, the
OLCI and MERIS albedo products place a premium on the
melt pond areas in the two polar regions. Because of the al-
gorithm’s emphasis on summer melting ice, it has various
limitations, including being only applicable for data gath-
ered from May to August, having a limited ability to retrieve
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albedo on snow-covered ice and ice with brine pockets in-
clusions, omitting retrieval for open-water areas, and having
restrictions in areas with low sea ice concentration and very
thin ponded ice.

When OLCI albedo maps are compared to in situ data
(Fig. 17b—c), it is clear that the derived albedo values for
snow-covered ice are excessively high (0.75 to 0.82 versus
0.65 to 0.7). On 26 June 2017 (DOY 177), the RGB im-
age shows a few open-water spots around the northern coast-
line that are not captured by OLCI. This failure is partly at-
tributable to the product’s spatial resolution; data from its
original resolutions (300 m at full resolution and 1.2km at
reduced resolution) were mapped to a 12.5 km NSIDC grid.
However, the main reason is that the MPD employs pixels
solely from sea ice grid cells and that open-water pixels have
been filtered out using a brightness criterion. The error in the
OLCI retrieval is quantified by the scatterplots in Fig. 14e—f
and the statistics (R2, RMSE, bias, etc.) in Table B3.

By comparison, the RTM-SciML albedo algorithm is ca-
pable of retaining the surface’s albedo truthfully regardless
of its condition and accurately reflecting the albedo values
of these surfaces (i.e., more consistent with the measured
albedo values). The current MLCM tool does not discrimi-
nate melt ponds from bare ice and labels both as “sea ice”.
Because the MPD algorithm employs reflectance values from
three visible channels (442, 490, and 510 nm), we may use
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Figure 15. Maps of albedo and melt pond fraction averaged during a 5d period in 2007 between DOY 166 and 170. From left to right, the
columns show CLARA-SAL albedo, RTM-SciML-based albedo retrievals, MPD-based albedo retrievals, and the MPD-derived melt pond
fraction (Karlsson et al., 2012 this study, and Istomina et al., 2015). The upper panels depict the Kara Sea, while the lower panels depict
Banks, Prince Patrick, and Melville islands. At the bottom, color bars representing the corresponding values are displayed. In panels (¢) and
(d), empty regions represent cloud pixels that were detected by the MLCM cloud mask (and hence removed), whereas empty regions in
panels (e) through (h) represent either cloud pixels or open-water areas that were not processed by the MPD algorithm.

a similar criterion to derive the melt pond fraction from
MODIS or perhaps other sensors as well in the future.

5.4 Comparison with the direct-estimation algorithms
(GLASS and VIIRS SURFALB)

At the time this paper was written, the phase-2 GLASS
surface albedo product acquired using the MODIS sen-
sor (Li et al., 2018) had not yet been released; the V40
GLASS (MODIS) product listed on the product page (http:
/Iwww.glass.umd.edu/Download.html, last access: 18 Febru-
ary 2023) covers just land surface, leaving ocean surface
blank. Consequently, the V40 GLASS (AVHRR) is com-
pared to RTM—SciML retrievals in the following section.
The ACLOUD campaign was conducted during the 2017
spring-to-summer transition, which marked the beginning
of the melt season, with snow-covered sea ice predominat-
ing and a small percentage of melt ponds. Three distinct
synoptic weather periods were defined: a cold period (23—
29 May 2017), a warm period (30 May to 12 June 2017), and
a normal period (13-26 June 2017) (Wendisch et al., 2019;
Knudsen et al., 2018). Throughout the cold period, surface
conditions were relatively steady, with albedo values reach-
ing 0.8 on snow-covered ice and approaching 0.6 on bare sea
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ice. During the warm period, the northwesterly wind pushed
the Greenland coastal ice southward, resulting in the creation
of the Northeast Water (NEW) Polynya and the opening of
the region north of Nordaustlandet (Wendisch et al., 2019).
It is evident from Fig. 18 that the RTM-SciML model ac-
curately represents the three synoptic periods, including the
emergence of NEW Polynya during the warm period and
the polynya’s closure during the normal period. In contrast,
GLASS (AVHRR) is incapable of detecting these transitions.
In Fig. 10 of Qu et al. (2016), the CLARA SAL was
used as a reference to compare albedo maps acquired from
GLASS (MODIS) with comparisons performed in the same
regions as depicted in Fig. 15 of this work. Comparing the
two figures demonstrates that the RTM-SciML retrievals
agree well with direct-estimation results. Therefore, the lim-
itation of GLASS (AVHRR) could be attributable to the re-
stricted number of shortwave channels accessible for the
AVHRR sensor (three as opposed to seven for MODIS).
Figure 19 shows pan-Arctic albedo images retrieved using
RTM-SciML (MODIS and SGLI), the direct-estimation ap-
proach (VIIRS), and the MPD method (OLCI) for 2 represen-
tative days with thick ice (partially covered with snow) and
melting ice. In order to facilitate analyses, Fig. 20 displays
the longitudinally averaged albedo based on data collected
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on the same days. Because neither VIIRS nor OLCI pro-
vides open-water retrieval and the cloud-filtering data from
the four sensors differ, data are collected to calculate an av-
erage only when all four albedo products (MODIS, SGLI,
VIIRS, and OLCI) have values at the same grid cells. More-
over, Fig. B3 illustrates the percentage difference between
each retrieval result and the CLARA-SAL product (Karlsson
et al., 2020). The albedo estimated with MODIS and SGLI
sensors using RTM-SciML models agrees quite well with
the CLARA-SAL values. The VIIRS retrievals shown in the
29 June image are more comparable to these three, but the
15 July image appears to have lower values.

Due to the use of an uncoupled RTM in the training dataset
for the direct-estimation method, the depths of snow, sea ice,
and melt ponds were retained as fixed values, hence restrict-
ing the algorithm’s retrieval precision for the more variable
sea ice surfaces. The VIIRS SURFALB product relies on lin-
ear relations between TOA reflectance and surface albedo at
various angular bins stored in a look-up table (LUT). The
LUT include over 40 000 combinations of geometry angles.
Multiplying the RTM-simulated or measured surface BRDFs
(around 120 000) by the possible atmospheric configurations
and by the geometry angle dataset, the resulting LUT is enor-
mously large. Note, however, that only tens of thousands of
surface situations were defined by the enormous LUT. Snow
in nature possesses complex surface cover (which varies with
density, impurity inclusions, thickness, and effective grain
size), but the LUT employed in the VIIRS SURFALB prod-
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uct simply featured a snow layer with a fixed depth. The same
issue exists in terms of sea ice conditions. In addition, since
a LUT is essentially a linear regression model, the proba-
ble correlations between geometry angles and radiance or re-
flectance values from different channels are not learned in the
training (i.e., look-up values from the table) process.

It is difficult to construct a quantitative comparison be-
tween the RTM-SciML albedo and VIIRS SURFALB prod-
ucts due to the lack of validation data that overlaps with the
operational time of VIIRS SURFALB. Nonetheless, it is es-
sential to highlight the value of our product’s ability to re-
trieve albedo from any heterogeneous sea ice surface, given
that the impurities, pond depths, snow cover, and ice layers
are all included in the training data for RTM—-SciML models.

6 Conclusion and summary

In this study, we described the development of a novel RTM—
SciML sea ice albedo retrieval tool that can be applied to
optical sensors that measure suitable radiance data. Com-
parisons of the retrieval results from SGLI and MODIS
sensors with measurements showed good agreement. On a
pan-Arctic scale, retrieval results derived from RTM-SciML
models are most similar to the CLARA-SAL values, suggest-
ing the reliability of the RTM-SciML framework. For in situ
validation, comparison with albedo values acquired during
low-level aircraft flights and retrieval of albedo values based
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Figure 17. Maps of albedo derived using RTM-SciML (MODIS data) and the MPD algorithm (OLCI data, Istomina, 2020). The top panels
depict albedo values on 24 June 2017, while the bottom panels depict values on 26 June 2017. From left to right, panels depict retrievals
using RTM-SciML, MPD, and pyranometer measurements layered on an RGB image. On the associated images, the MODIS transits used
to retrieve albedo and plot the RGB are labeled. Notably, no OLCI retrieval was available on 25 June 2017, and the campaign measurements

for reference were taken on 25 and 26 June.

on more than 2000 data points during cloudless conditions
demonstrated a small RMSE of 0.066.

The RTM-SciML albedo algorithm was trained on a large
synthetic dataset generated using a coupled RTM and repre-
sents the optical properties of the cryosphere surface (bare
ice, snow-covered ice, water, and melt pond). The combi-
nation of these two characteristics enables it to exploit the
advantages of both the AccuRT and the RTM-SciML simu-
lation tools.

When building the SD, we can reap the benefit of Ac-
cuRT being a RTM for the coupled system that accurately
incorporates atmosphere—snow—sea ice—water interactions to
compute TOA radiances and corresponding surface albedo
values. Information of both the surface BRDF and the IOPs
of the atmosphere is implicitly taken into account. We are
thus saved from the procedure to perform atmospheric cor-
rections. This retrieval procedure does not rely on predefined
spectral reflectance threshold values for individual types of
surface; the surface classification and albedo retrieval are

The Cryosphere, 17, 1053-1087, 2023

separate processes, which eliminates errors caused by incor-
rect surface condition assumptions.

The RTM-SciML albedo algorithm still possesses cer-
tain limitations. Without prior knowledge of the underlying
radiative transfer theory, the ML models addressed in this
paper can only approximate the hard-limit physical model
(a RTM). Therefore, there may be adversarial instances in
which small perturbations in the input data result in drasti-
cally divergent retrieval outcomes. Creating specialized net-
work architectures and tailoring loss functions that repre-
sent known physical systems is one method for tackling this
under-specification challenge (i.e., physics-informed neural
networks, PINNs, Cuomo et al., 2022; Daw et al., 2021;
Di Natale et al., 2022).

Meanwhile, in the current training data, snow or ice does
not exhibit layered topographic variation for the sake of
simplicity. Additionally, the present RTM-SciML albedo re-
trieval tool does not account for whitecaps and sun glints on
the open-ocean surface that would occur at oblique viewing
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angles. Nevertheless, the limits regarding training data can
be adequately addressed by extending the SD in accordance
with pertinent RTM simulations.

In summary, the RTM-SciML framework presented and
discussed here has huge potential for the following reasons.

1. It may be used to retrieve albedo of relatively flat
glaciers because a flat layer of glacier ice is simi-
lar to sea ice without brine pockets (Warren, 2019).
The “wind-roughened air—water interface” can be rep-
resented in AccuRT using a one- or two-dimensional
Gaussian surface slope distribution (for details, see
Stamnes et al., 2018). In comparison to the existing
method for retrieving glacier albedo (Ren et al., 2021),
which uses the measured BRDF of sea ice to ap-
proximate glacier-BRDF (Gatebe and King, 2016) and
bi-conical band reflectance observed by a spaceborne
imaging radiometer to approximate the ice albedo in
the shortwave-infrared band, the methodology we pro-
pose here may be more appropriate for characterizing
the anisotropic reflectance of a rough glacier surface.

2. The framework is generic in nature, allowing for com-
parisons between not only the MODIS sensors mounted
on Terra and Aqua but also a large number of existing
polar-orbiting sensors and well-planned future sensors,
enabling sensor-to-sensor retrieval comparisons. In a re-
cent review, Liang et al. (2019) emphasized the impor-
tance of developing retrieval algorithms that are broadly
applicable to all satellite sensors: albedo retrievals based
on multi-platform satellite sensors can significantly in-
crease the amount of valid and accurate observational
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data, thereby increasing spatial and temporal coverage
regardless of the specific method of retrieval. Mean-
while, developing retrieval algorithms using the same
methodology enables a more extensive examination of
the uncertainty associated with each sensor (e.g., identi-
fying saturated channels and developing uncertainty as-
sessment methods). The RTM—-SciML framework pre-
sented in this paper is ideally suited for such a require-
ment.

Appendix A: Parameterizations in the synthetic dataset
(SD) for coupled RTM as input

Al Bare seaice

The radiative transfer processes in bare sea ice include ab-
sorption by pure ice, scattering by air bubbles, and scattering
and absorption by brine pockets and solid salts (Jin et al.,
1994). Unfortunately, direct observational data of air bub-
ble volume fraction and radius (Vpy, py) in the field is dif-
ficult (Petrich and Eicken, 2009). Lindsay (2001) used sea
ice thickness as the main factor to parameterize areal albedo
and achieved an uncertainty within 0.05 and 0.10 (even with-
out cloud screening), showing that sea ice thickness is the
dominant parameter determining bare sea ice albedo.

For the parameterization of sea ice in this study, the rest of
the sea ice parameters (including brine pocket volume frac-
tion, air bubble volume fraction, air bubble radius) are lin-
early fitted as a function of sea ice thickness () as shown in
Table Al. The expectations are that thinner new young ice
(NYI) and first-year ice (FYI) (<30cm and <1m) would
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Table Al. Physical parameters of ice. In generating the sea ice thickness, a truncated-normal distribution (i« = 0.03; o = 1.5) was used to
ensure an adequate amount of thin ice in the SD. The brine pocket radius conforms to a Tukey lambda distribution (with A = 0.5).

Parameter Sym. Unit Value

Sea ice thickness h m 0-3

Brine pocket volume fraction — Vp — (—0.067 -log(h) +0.1147) - (1 + 0.2 - rpy)
Brine pocket radius Tbr um 300-700

Air bubble volume fraction Vou - 0.0214 - h 4+ 0.0068

Air bubble radius Tbu um —18.3-h242227-h+96.5

contain fewer bubbles and would in general be more saline
than the thicker, multi-year ice (MYI) counterpart (> 1.5 m).
As sea ice deteriorates, brine water is excluded in the desali-
nation process, which results in a smaller brine pocket vol-
ume fraction and radius values (Vyy, rvr). Empirical equations
were derived with the typical values of bubble and brine pa-
rameters for sea ice with increased thickness (adopted from
Table 1 in Stamnes et al., 2011).

It is worth noting that the equation of bulk brine concen-
tration with ice thickness in Toyota et al. (2007) (which is
based on in situ measurements of sea ice from the Sea of
Okhotsk) and our equation (V4 in Table A1) both show brine
concentration approaching ~10 % asymptotically as sea ice
thickens.

A2 Seaice covered with meltwater

The water depth on thinner ice is in general shallower than on
thicker ice. This situation is particularly true for the coastal
polynya region, where ice intermittently melts and refreezes
from meltwater. In addition to temperature, the topography of
the ice underneath also influences meltwater depth. A thinner
ice layer is unlikely to evolve into hummocky topography
(like MYT ice surfaces) to hold deep meltwater (Perovich and
Polashenski, 2012).

Generally, melt ponds on sea ice do not exceed 1 m thick-
ness. From RTM simulations, we found that a pond thickness
of 1.5m was the critical value that distinguishes the sea ice
properties from the overlying meltwater, and we therefore
use it as the upper limit of meltwater thickness (Table A2).

In order to increase the variation in the SD, in addition to
the meltwater in the first ocean layer, we also added variation
to the chlorophyll a (chl a) concentration as well as colored
dissolved organic matter (CDOM) concentrations in the third
ocean layer (the second layer is sea ice) in ranges typical for
the areas with sea ice cover (Konig et al., 2019; Mustapha
and Saitoh, 2008).

A3 Seaice covered with snow
The albedo of snow depends on the grain shape and size,
solar zenith angle, impurities in the snow, surface roughness,

the thickness of the snow layer (Grenfell et al., 1994), and
the sky condition (clear or cloudy).
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Table A2. Physical parameters of meltwater on ice and ocean water.
Meltwater thickness and CDOM values follow randomly distributed
uniform distributions in the specified ranges. For the chl a concen-
tration, a reciprocal continuous distribution (long tail extending to
high values) was used.

Parameter Units Value
Meltwater thickness m 0-1.5
Chlorophyll concentrations mg m~3 0.5-10
CDOM at 443 nm m~! 0.01-0.1

Table A3. Physical parameters of snow cover. The snow grain size
and snow thickness were generated with a randomly uniform distri-
bution in the specified ranges.

Parameter Symbol  Units Value
Snow grain size Te um 50-150
Snow density Os kg m3 200
Impurity fractions  fimp - 10~7-10"6
Snow thickness hsnow m 0.01-0.2

The snow cover on all sea ice types can accumulate to op-
tically thick values (> 10cm). Nihashi et al. (2009) found
that with snow present a 16 cm snow layer on 80cm thick
first-year ice would have the same insulation effect as a
much thicker, 192 cm slab of ice. Similarly, in their simu-
lations, Hamre et al. (2004) found that 2.5 cm thick snow
cover has about the same transmittance as a 61 cm thick ice
layer. In our simulations, the spectral albedo of both coarse-
grained (700 um) and fine-grained (100 um) pure snow (im-
purity fraction fimp = 1073 ) both saturate when the thick-
ness approaches 20 cm; beyond this limit, adding more snow
does not further increase the albedo. This value is therefore
set as the upper boundary of snow cover depth.

In their snow grain size retrievals, Jékel et al. (2021a)
found an optically equivalent snow grain size (r.) on glacier
and smooth land surfaces centered in the 50-100 um range,
while the range on smooth sea ice surfaces was 100—150 pum.
A broad range of 50-150 ym was adopted in our SD simula-
tions (Table A3).
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Table A4. Geometries and atmospheric parameters. All parameters
conform to random uniform distributions in the specified ranges.

Parameters Value
Solar zenith angle 20-80°
Sensor angle 0.01-50°
Azimuth angle 0.01-180°
AOD at 500 nm 0.01-0.3
Relative humidity 0.5
Fine-mode fraction 0.9

A4 Geometries and atmospheric parameters

The temperature, pressure, and concentrations of the major
atmospheric elements were described using the “subarctic
summer” atmospheric profile (Anderson et al., 1986). The
small amount of aerosols typically found in the sea ice re-
gions on cloud-free days and the relative impact of aerosols
on the surface reflectance of such a bright surface indicate
that the aerosol optical depth (AOD) shown in Table A4 will
suffice (Mehta et al., 2016; Winker et al., 2013).

Appendix B: Appendix figures and tables in discussion

10 20

(a) NN retrievals, with validation data for comparison (N=4000), (b) NN retrievals, sampled from one MODIS transit (N=15384)
3 81 .
s 15 BN measurement
& 61 1 NN-8,8,8
£ . 101 ] NN-10,10,10
g [ NN-16,16,16
& 5] 51 [ NN-16,10,8

0L - oL . ﬁ .
Shortwave Albedo
10 20

(c) ML retrievals, with validation data for comparison (N=4000) (d) retrievals, sampled from one MODIS transit (N=15384)
~ 8
B 15 A B measurement
3 [ ML-MARS(P2)
g 10 1 ML-LR(P4)
9 [ ML-Voting
E . 54 - [ ML-Blending

L. . ) j%
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Shortwave Albedo Shortwave Albedo

Figure B1. The top and bottom rows show a comparison of the retrieval results from four MLANN models and four ML models, respectively.
The validation results of the eight selected models against aircraft measurements are provided in Table B1. Histograms of the measurements
are presented as a reference (gray areas) in (a) and (c). Panels (b) and (d) are sampled retrieval results using data from the MODIS transit at
14:00 UTC on 25 June 2017.
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Table B1. Summary of the evaluation results using pyranometer data sampled from Sect. 2.5.2 (N = 4000). The SciML models were classi-
fied into seven categories: linear regression with polynomial terms, multivariate adaptive regression splines (MARS) with polynomial terms,
principal component analysis (PCA)-processed MARS, tree models, voting ensembles, linear blending ensembles, and MLANN. Within
each category, the models that perform the best are shown in bold. The following metrics are used for evaluation: : R? score, Pearson r
coefficient (r), RMSE, MAE, mean absolute percentage error (MAPE), fibove, fEE<15 foelow» and bias.

Category Model R? r RMSE MAE MAPE Regression Sfabove  foelow  SEE<I5 Bias
(%) relation (%) (%) (%)
degreel (P1) 0.85 094 0.09 0.07 243  $=0.74y+0.12 9.9 4 86 0.01
degree2 (P2) 0.8 0.93 0.104  0.079 244  $=0.97y—-0.03 33 15 82 —-0.013
LR degree3 (P3) 079 092  0.105 0.073 21.1 y=y-0.03 43 9 87 —0.019
degreed (P4) 0.83 093  0.096 0.063 167 y=y—0.02 7.5 4 88 -0.014
SGD 085 094 0.09 0.07 245 $3=0.74y+0.12 10.3 4 86 0.01
degreel (P1) 0.66 093 0.135  0.111 21.8  $=0.68y+0.07 2.6 24 73 0.025
MARS degree2 (P2) 0.81 0.93 0.1 0.074 169 y=10.85y+0.03 2.7 8 90 -0.004
degree3 (P3) 0.82 093 0.098 0.072 157 $=0.82y+0.05 2.7 7 90 0.007
degreel (P1) 076 0.89  0.114 0.089 19.2 3 =0.86y +0.03 6.3 11 83  —0.005
PCA-MARS degree2 (P2) 083 093 0.095 0.067 149 5 =0.86y+0.03 2.9 7 90 -0.001
degree3 (P3) 0.81 093 0.101  0.073 16 3y=0.83y+40.03 2.6 9 89 0.003
Decision tree (DT) 0.57 0.89 0.151 0.114 28.1 y=1.02y+0.08 23.8 4 72 —0.025
Random forest (RF) 055 0.89  0.155 0.12 344  $=0.96y+0.13 29.8 1 69 0.003
Tree Models Extra trees (XT) 079 092  0.105 0.076 27 y=0.87y+0.13 17 2 81 —0.003
AdaBoost (AdaB) 0.3 0.81 0.193  0.162 362 y=0.6y+0.07 52 49 46 0.033
Grad. boost. (GB) 075 092  0.115 0.086 219 y=0.97y+0.08 17.2 2 81 -0.011
XGBoost (XGB) 0.65 0.88 0.137  0.103 233 $3=0.77y+0.04 33 22 75 0.01
LR(P1, P2, P3, P4) 085 093 0.09 0.06 16.6  $=0.95y 4.1 6 90 —0.012
Voting MARS(PL, P3, P3) 0.81 093 0.101  0.077 188 3=0.87y+0.01 2.5 8 90 0.001
SGD+GB+XGB 0.86 094  0.087 0.056 164 $=0091y+0.08 8.6 2 89 —0.006
LR+MARS+XGB 0.87 093 0.084 0.058 15  y=0.86y+0.06 5.1 4 91  -0.004
LR(P1, P2, P3, P4) 0.82 093 0.098  0.066 184 3 =0.99y+0.04 10 4 86 —0.002
Linear blending MARS(PL, P3, P3) 0.83 093 0.096 0.066 185 $=0.96y —0.01 3.8 7 89  —0.002
SGD+GB+XGB 0.76 093 0.113  0.084 20.1 y=y+0.06 15.7 2 82 —0.001
LR+PCA-MARS+SGD 0.85 0.93  0.091 0.063 169 y=092y+0.01 3.6 6 91  -0.003
(16 x 16 x 16) 0.81 092  0.100 0.065 193 $=0.94y +0.06 12.7 3 85 —0.001
MLANN (16 x 10 x 8) 0.84 0.92 0.092 0.061 17.8 §=10.94y+0.03 8.4 4 88  -0.013
(10 x 10 x 10) 0.85 092  0.091 0.060 17.5 $=0.93y+0.03 7.8 4 88 —0.002
(8x8x8) 0.84 092  0.092 0.060 182 $3=0.9y+0.06 10.3 3 87 —0.002
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Table B2. Summary of the evaluation results for a time constraint with a loose value (§; < 5h). The data were divided into four categories:
three broadband albedos determined by the albedometer’s spectral range and a single broadband shortwave albedo determined by the pyra-
nometer’s range. Three subcategories have been identified within each category: snow-covered sea ice (abbreviated as “snow” in the table),
bare sea ice (“ice”), and open water (“water”). Pearson r coefficient (r), root-mean-square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), faboves JEE<15- fbelow and bias are used to evaluate the retrieval in the subcategories (snow, ice, and
water) and the total valid data (“all”’). On the right side of the table, the total number of data in each subgroup is included (V).

Equipment (range)  Surface r RMSE MAE MAPE(%) fabove JSoelow JfEE<15 Bias N
water 0.89 0.053 0.046 37 1.2 3 96 —0.005 248
SNOW 0.64 0.069 0.051 73 3.7 0 96 —0.004 3423
Albedometer VIS o 057  0.147 0.125 347 374 8 55 0014 265
all 0.92 0.076  0.056 11 5.8 1 93 0.001 3936
water 0.83 0.032 0.021 20.3 1.2 3 96 -0.009 248
SNOW 0.62 0.143 0.133 30.2 62.1 0 38 0.011 3423
Albedometer NIR ;o 058  0.122 0.105 454 502 2 48 0.003 265
all 0.87 0.137 0.124 30.6 57.5 0 42 0.001 3936
water 0.88 0.04 0.034 31.1 2 2 96 —0.008 248
SNOW 0.66 0.084 0.067 12.1 8.4 0 91 —0.002 3423
Albedometer SW- o 056  0.139 0.119 414 46 3 51 0009 265
all 0.91 0.087 0.068 15.3 10.5 0 89 —0.003 3936
water 0.86 0.036  0.026 24.1 0.2 2 97 —0.008 1113
Pyranometer SNOW 0.53 0.096 0.065 12.5 8.4 1 90 —0.009 6257
y ice 0.5 0.182 0.152 41.8 28.3 31 41 0.026 594
all 0.9 0.099 0.066 16.3 8.7 4 88 —0.011 7964
1.0 o 10g
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Figure B2. The same as Fig. 4 but with the surface type represented by color. In addition, the lower-right corner of each panel displays data
for each surface type (v, RMSE, fgg<is,and N).
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Table B3. Summary of the evaluation results for MCD43D and OLCI. The data were divided into four categories: three broadband albedos
determined by the albedometer’s spectral range and a single broadband shortwave albedo determined by the pyranometer’s range. RTM—
SciML retrievals have been regridded to compare the validation errors. R-squared values (Rz), Pearson r coefficient (r), root-mean-square
error (RMSE), mean absolute error (MAE), fabove fEE<15> fbelow» and bias are used to evaluate the retrieval in the subcategories (snow,
ice, and water) and the total valid data (“all”’). On the left side of the table, the total number of data in each subgroup is included (N).

R? r RMSE MAE Regression fabove  Soelow  fuwithin Bias
relations (%) (%) (%)
VIS 086 0.96 0.083 0.073 y=0.87y+0.08 45.3 5 50 0.001
SciML-albedometer (N = 525) NIR 044 092 0.09 0.075 $=1.2y+0.03 37.1 4 59 —-0.016
SW 076 095 0.083 0.074 y=y+0.06 32.6 4 64 —0.01
VIS 081 094 0.095 0.069 y=1.09y—0.06 3.6 10 86  -0.024
MCD43-albedometer (N = 525) NIR 048 0091 0.087 0.072 y=1.16y —0.08 1.7 51 47 —-0.016
SW 073 093 0.087 0.067 y=1.12y —0.07 34 16 81 —0.021
SciML—-pyranometer (N = 1093) SW 085 093 0.078 0.049 5 =0.89y+0.01 7.9 7 85 —0.007
MCD43-pyranometer (N =1093) SW  0.77 093 0.099 0.078 3y =0.96y —0.05 3.1 30 66 —0.009
SciML-ACLOUD (N = 98) SW  0.69 0.84 0.092 0.071 y=0.75y+0.14 12.2 4 84  —0.005
OLCI-ACLOUD (N =98) SW  0.06 0.66 0.161 0.122 y=0.43y+043 29.6 1 69 0.016
SciML-retrieval (MODIS) SciML-retrieval (SGLI) Direct-estimation (VIIRS) MPD-retrieval (OLCI)
(22-06-29) (0206-29) (2.0206-29) (2.0206-29)

SciML-retrieval (MODIS) SciML-retrieval (SGLI) Direct-estimation (VIIRS) MPD-retrieval (OLCI)
(2020-07-14) (2020-07-14) (2020-07-14) (2020-07-14)
” = = = A

-50% -40% -30% -20% -10% 0 10% 20% 30% 40% 50%
& — Qctara . 100%)
fara

Relative Difference of Shortwave Albedo retrieval, compared to CLARA-SAL (- a

Figure B3. Percentage difference (m - 100 %) in albedo maps as compared to the CLARA-SAL (Karlsson et al., 2020) results (from

o,
left to right): RTM-SciML (MODIS), l%l"l%rﬂa/l—SciML (SGLYI), direct estimation (VIIRS), and MPD (OLCI). The top row represents values for
29 June 2020, while the bottom row represents values for 14 July 2020. Empty regions in SciML images represent cloud pixels that were
detected by the MLCM cloud mask, whereas empty regions in VIIRS and OLCI images represent either cloud pixels or open-water areas
that were not processed by the algorithms.
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Appendix C: List of acronyms

AANN Auto-associative neural network
ACLOUD  Arctic Cloud Observations Using Airborne Measurements During Polar Day
AFLUX Airborne measurements of radiative and turbulent FLUXes of energy and momentum

in the Arctic boundary layer
AVHRR Advanced Very High Resolution Radiometer

BRDF Bi-directional reflectance distribution function
BSA Black-sky albedo

Joc Black carbon impurity fractions

JSeloud Cloud fraction

SfEE<15 Percentage of data within 15 % expected error
Smpt Melt pond fraction

fic Sea ice concentration

GLASS Global Land Surface Satellite

10Ps Inherent optical properties

MAPE Mean absolute percentage error

MERIS MEdium Resolution Imaging Spectrometer
MISR Multi-angle Imaging SpectroRadiometer

MLCM Machine Learning Classification Mask

MLANN Multi-layer artificial neural network

MODIS Moderate Resolution Imaging Spectroradiometer
MOSAIC Multidisciplinary drifting Observatory for the Study of Arctic Climate
MPD Melt pond detection

NIR Near infrared

NTBC Narrow-to-broadband conversion

OLCI Ocean and Land Colour Instrument

PDF Probability density functions

SciML Scientific machine learning

SD Synthetic dataset

SGLI Second-generation Global Imager

SMART Spectral Modular Airborne Radiation measurement system
STBC Spectral-to-broadband conversion

SURFALB Surface albedo (the SURFALB product of VIIRS)
SW Shortwave

TOA Top of the atmosphere

VIS Visible

VIIRS Visible Infrared Imaging Radiometer Suite
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