Barry, R. and Gan, T. Y.: The global cryosphere: past,
present and future, 1st Edn.,
Cambridge University Press, Cambridge, 498 pp., ISBN-10 0521156858,
ISBN-13 978-0521156851,
https://doi.org/10.1017/CBO9780511977947, 2011.
a
Berthling, I., Etzelmuller, B., Isaksen, K., and Sollid, J. L.:
Rock glaciers on Prins Karls Forland. II: GPR soundings and the
development of internal structures, Permafrost Periglac.,
11, 357–369, 2000. a
Boyadjiev, S.: On the geology of Pirin Mountain, Annuaire de la
Direction des Recherches Geologiques et Minieres 8, 89–125, 1959 (in Bulgarian). a
Brown, J., Ferrians, O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-arctic map of permafrost and ground ice conditions,
Circum-pacific map series, Reston, VA, US Geological Survey,
https://doi.org/10.3133/cp45, 2001.
a
Brown, R. and Petkova, N.: Snow Cover Variability in Bulgarian
Mountainous Regions: 1931–2000, Int. J. Climatol., 27,
1215–1229,
https://doi.org/10.1002/joc.1468, 2007.
a
Damm, B. and Langer, M.: Kartierung und Regionalisierung von Permafrostindikatoren
im Rieserfernergebiet (Südtirol/Osttirol), Mitt.
Österr. Geogr. G., 148, 295–314, 2006. a
Dimovski, S. and Stoyanov, N.: Localization of suitable
sites for the construction of monitoring wells in a small-scale rock
complex, Annual of University of Mining and Geology
“St. Ivan Rilski”, 58, 140–145, 2015.
a,
b
Dobinski, W.: Permafrost of the Carpathian and Balkan Mountains,
eastern and southeastern Europe, Permafrost Periglac.,
16, 395–398,
https://doi.org/10.1002/ppp.524, 2005.
a
Dortman, N. B.: Physical Properties of the Rocks and Mineral Resources,
Handbook of the Geophysicist, Nedra, Moscow, 552.08:53(03), 1984 (in Russian). a
Emmert, A. and Kneisel, C.: Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging, The Cryosphere, 11, 841–855,
https://doi.org/10.5194/tc-11-841-2017, 2017.
a
Etzelmüller, B. and Frauenfelder, R.:
Factors Controlling The Distribution of Mountain Permafrost in The Northern
Hemisphere and Their Influence on Sediment Transfer, Arct. Antarct.
Alp. Res., 41, 48–58,
https://doi.org/10.1657/1523-0430-41.1, 2009.
a
Evans, S.: Dielectric properties of ice and snow – a review,
J. Glaciol., 5, 773–792, 1965. a
Gadek, B. and Grabiec, M.: Glacial ice and permafrost distribution in
the Medena Kotlina (Slovak Tatras): mapped with application of GPR and GST
measurements, Studia Geomorphologica Carpatho-Balcanica, XLII, 5–22, 2008. a
Gachev, E.: Climatic factors for the year-round dynamics
of microglacier Snezhnika in Pirin, Scientific conference “Geographic
aspects of planning and the use of the territory in the context of global
changes”, Extended Abstracts, ISBN 978-619-90446-1-2, 2016 (in Bulgarian).
a,
b,
c,
d
Gachev, E.: High mountain relief in marble in Pirin mountains, Bulgaria:
Structure, specifics and evolution, Rev. Geomorfol., 19, 118–135, 2017b. a
Gachev, E. and Mitkov, I.: Small glaciers in Pirin (Bulgaria) and Durmitor
(Montenegro) as glacio-karstic features, Similarities and differences in
their recent behaviour, Quatern. Int., 504, 153–170,
https://doi.org/10.1016/j.quaint.2018.03.032, 2019.
a
Gachev, E., Stoyanov, K., and Gikov, A.: Small glaciers on the Balkan
Peninsula: State and changes in the last several years,
Quatern. Int., 415, 33–54,
https://doi.org/10.1016/j.quaint.2015.10.042, 2016.
a
Georgieva, G., Kisyov, A., Tzankov, C., Chtirkova, B., Gourev, V., and Ivanov, Y.:
Evaluation of geophysical methods for studying snowfields in Pirin Mountain, Bulgaria
Extended abstract from 10th Congress of Balkan Geophysical Society, BGS 2019,
https://doi.org/10.3997/2214-4609.201902662, 2019.
a,
b
Glazirin, G. E., Kodama, Y., and Ohata, T.:
Stability of drifting snow-type perennial snow patches
Bull. Glaciol. Res., 21, 1–5, 2004.
a,
b
Gruber, S. and Haeberli, W.: Mountain Permafrost, in:
Permafrost Soils. Soil Biology, edited by: Margesin, R., Springer, Berlin, Heidelberg, Vol. 16,
https://doi.org/10.1007/978-3-540-69371-0_3, 2009.
a
Grunewald, K. and Scheithauer, J.: Klima- und Landschaftgeschichte Sudosteuropas.
Rekonstruktion anhand von Geoarchiven im Piringebirge (Bulgarien),
Rhombos Verlag, Berlin, 178 pp., ISBN 978-3-941216-02-0, 2008. a
Gruenewald, K., Scheithauer, J., and Gikov, A.:
Microglaciers in the Pirin Mountains,
Problems of Geography, 1–2, 1–16, 2008 (in Bulgarian).
a,
b,
c,
d,
e,
f
Harris, S. A., French, H. M., Heginbottom, J. A., Johnston, G. H., Ladanyi, B.,
Sego, D. C., and van Everdingen, R. O.:
Glossary of permafrost and related ground-ice terms, Technical Memorandum
(National Research Council of Canada. Associate Committee on Geotechnical Research),
no. ACGR-TM-142, 159 pp.,
https://doi.org/10.4224/20386561, 1988.
a,
b
Hauck, C.: Geophysical methods for detecting permafrost in high
mountains, Versuchsanstalt für Wasserbau Hydrologie und Glaziologie der
Eidgenossischen, Technischen Hochschule Zurich, ISSN 0374-0056, 2001.
a,
b,
c,
d,
e
Hauck, C.: New Concepts in Geophysical Surveying and Data
Interpretation for Permafrost Terrain, Permafrost Periglac., 24, 131– 137,
https://doi.org/10.1002/ppp.1774, 2013.
a
Hausmann, H., Krainer, K., Brück, E., and Ullrich, C.: Internal
structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers
(Ötztal Alps, Austria) determined from geophysical surveys, Austr.
J. Earth Sci., 105, 12–31, 2012. a
Haeberli, W.: Untersuchungen zur Verbreitung von Permafrost zwischen
Flüelapass und Piz Grialetsch (Graubünden). Mitteilung der
Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, 18, 7–128, 1975. a
Hilbich, C., Marescot, C. L. Hauck, C., Loke, M. H.,
and Mäusbacher, R.: Applicability of Electrical Resistivity Tomography Monitoring
to Coarse Blocky and Ice-rich Permafrost Landforms, Permafrost
Periglac., 20, 269–284, 2009. a
Hinkel, K. M., Doolittle, J. A., Bockheim, J. G., Nelson, F. E.,
Paetzold, R., Kimble, J. M., and Travis, R.: Detection of subsurface permafrost
features with ground-penetrating radar, Barrow Alaska, Permafrost
Periglac., 12, 179–190, 2001. a
Hoekstra, P. and McNeill, D.: Electromagnetic probing of
permafrost, in: North American Contribution, Second International Conference
on Permafrost, Yakutsk, USSR, Washington DC, National Academy
of Sciences, 10009483183, 517–526, 1973.
a,
b
Hughes, P. D.: Little Ice Age glaciers in the Mediterranean
mountains, Mediterranee, 122, 63–79, 2014. a
Hughes, P. D.: Little Ice Age glaciers and climate in the
Mediterranean mountains: a new analysis, Cuadernos de
Investigación Geográfica, 44.1, 15–45, 2018. a
Ikeda, A.: Combination of conventional geophysical methods for
sounding the composition of rock glaciers in the Swiss Alps, Permafrost
Periglac., 17, 35–48,
https://doi.org/10.1002/ppp.550, 2006.
a
Ingeman-Nielsen, T.: Geophysical techniques applied to permafrost
investigations in Greenland. PhD Thesis BYG DTU R-123 Arctic Technology
Centre Department of Civil Engineering Technical University of Denmark,
ISSN 1602-2917, 2005.
a,
b
Jol, H. M. (Ed.): Ground Penetrating Radar Theory and
Applications, 1st Edn., Elsevier, 544 pp., ISBN 9780444533487 7, 2009. a
Jørgensen, A. S. and Andreasen, F.: Mapping of permafrost surface
using ground-penetrating radar at Kangerlussuaq Airport, western Greenland,
Cold Reg. Sci. Technol., 48, 64–72, 2007. a
Kawashima, K., Yamada, T., and Wakahama, G.: Investigations of internal
structure and transformational processes from firn to ice in a perennial snow
patch, Ann. Glaciol., 18, 117–122,
https://doi.org/10.3189/S0260305500011368, 1993.
a
King, M. S.: The influence of clay-sized particles on
seismic velocity for Canadian Arctic Permafrost, Can. J. Earth
Sci., 21, 19–24, 1984. a
Kisyov, A., Tzankov, Ch., Chtirkova, B., Georgieva, G., Ivanov, Y.,
Georgieva, B., Ishlyamski, D., Gourev, V., and Nikolov, S.:
Study of perennial snow patches in Bulgaria, Proceedings of
IX National Geophysical Conference, Sofia, ISSN 1314–2518, 2018 (in Bulgarian). a
Kneisel, C. and Kääb, A.: Mountain permafrost dynamics within a
recently exposed glacier forefield inferred by a combined geomorphological,
geophysical and photogrammetrical approach, Earth Surf. Proc. Land., 32,
1797–1810,
https://doi.org/10.1002/esp.1488, 2007.
a
Kneisel, C., Hauck, C., Fortier, R., and Moorman, B.: Advances in
geophysical methods for permafrost investigations, Permafrost
Periglac., 19, 157–178,
https://doi.org/10.1002/ppp.616, 2008.
a,
b,
c,
d,
e,
f
Lawson, D. E., Strasser, J. C., Evenson, E. B., Alley, R. B., Larson, G. J., and
Arcone, S. A.: Glaciohydraulic supercooling: A freeze-on mechanism to
create stratified, debris-rich basal ice: I. Field evidence,
J. Glaciol., 44, 547–562, 1998. a
Loke, M. H.: A practical guide to RES2DINV ver. 3.4; Rapid 2-D resistivity &
IP inversion usingthe least-squares method,
Geotomo Software, Penang, Malaysia, 2001. a
Loke, M. H.: Res2Dinv ver. 3.59 for Windows XP/Vista/7,
Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method,
Geoelectrical Imaging 2D & 3D Geotomo Software 2010, Malaysia, 2010. a
Mares, S. and Tvrdý, M.: Introduction to Applied Geophysics,
Springer Netherlands, 581 pp., ISBN 978-90-277-1424-4, 1984.
a,
b
Navarro, F. and Eisen, O.: Ground-penetrating radar in glaciological
applications, Remote Sens. Glaciers, chap. 11, 195–229,
ISBN 9780429206429,
https://doi.org/10.1201/b10155, 2009.
a,
b
Olhoeft, G. R.: Electrical properties of permafrost, 3rd International Conference on Permafrost
1, 127–131, ISBN 0-600-1735-0, 1978. a
Oliva, M., Zebre, M., Guglielmin, M., Hughes, P. D., Çiner, A., Vieira, G.,
Bodin, X., Andres, N., Colucci, R. R., García-hernández, C., Mora, C., Nofre,
J., Palacios, D., Pérez-alberti, A., Ribolini, A., Ruiz-fernandez, J., Sarıkaya,
M. A., Serrano, E., Urdea, P., and Yıldırım, C.:
Permafrost conditions in the Mediterranean region since the Last Glaciation.
Earth-Sci. Rev., 185, 397–436.
https://doi.org/10.1016/j.earscirev.2018.06.018, 2018.
a,
b
Onaca, A., Ardelean, A. C., Urdea, P., Ardelean, F., and Sîrbu, F.:
Detection of mountain permafrost by combining conventional geophysical
methods and thermal monitoring in the Retezat Mountains, Romania, Cold
Reg. Sci. Technol., 119, 111–123, 2015.
a,
b
Onaca, A., Ardelean, F., Ardelean, A., Magori, B., Sirbu, F., Voiculescu, M.,
and Gachev, E.: Assessment of permafrost conditions in the highest mountains of
the Balkan Peninsula, Catena, 185, 104–288,
https://doi.org/10.1016/j.catena.2019.104288, 2020.
a
Onaca, A., Gachev, E., Ardelean, F., Ardelean, A., Perșoiu, A., and Hegyi, A.:
Small is strong: Post-LIA resilience of Europe's Southernmost glaciers assessed
by geophysical methods, Catena, 213, 106143,
https://doi.org/10.1016/j.catena.2022.106143, 2022.
a,
b,
c,
d
Pipan, M., Baradello, L., Forte, E., Prizzon, A. and Finetti, I.:
2-D and 3-D processing and interpretation of multi-fold ground
penetrating radar data: a case history from an archaeological site
J. Appl. Geophys., 41, 271–292, 1999. a
Pipan, M., Baradello, L., Forte, E., and Prizzon, A.:
Polarization and kinematic effects in azimuthal investigations of linear
structures with Ground Penetrating Radar, Proceedings of the Symposium on
the Application of Geophysics to Engineering and Environmental Problems
EEGS, 433–442,
https://doi.org/10.4133/1.2922773, 2000.
a
Popov, V.: Morphology of the Cirque Golemia Kazan – Pirin Mountains,
Announcements of the Institute of Geography, 6, 86–99, 1962 (in Bulgarian).
a,
b,
c,
d
Popov, V.: Observations on the Glacieret in the Cirque Golemia Kazan,
the Pirin Mountains, Announcements of the Institute of Geography,
Bulgarian Academy of Sciences, 7, 198–207, 1964 (in Bulgarian).
a,
b
Rolshoven, M.: Alpines Permafrostmilieu in der Lasörlinggruppe/
Nördliche Deferegger Alpen (Osttirol)), Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research,
52, 55–64,
https://doi.org/10013/epic.29521, 1982.
a
Sanz-Ablanedo, E., Chandler, J. H., Rodriguez-Perez, J. R., and Ordonez, C.:
Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a
Function of the Number and Location of Ground Control Points Used,
Remote Sensing, 10, 1606,
https://doi.org/10.3390/rs10101606, 2018.
a
Scott, W., Sellmann, P., and Hunter, J.: Geophysics in the study of
permafrost, in: Geotechnical and Environmental Geophysics, edited by: Ward, S., Society of Exploration Geophysics, Tulsa, 355–384,
https://doi.org/10.1190/1.9781560802785.ch13, 1990.
a,
b,
c,
d
Supper, R., Ottowitz, D., Jochum, B., Romer, A., Pfeiler, S.,
Kauer, S., Keuschnig, M., and Ita, A.: Geoelectrical monitoring of frozen ground and
permafrost in alpine areas: field studies and considerations towards an
improved measuring technology, Near Surf. Geophys., 12, 93–115, 2014.
a,
b
Turner, D., Lucieer, A., and Watson, C.:
An Automated Technique for Generating Georectified Mosaics from Ultra-High
Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from
Motion (SfM) Point Clouds,
Remote Sensing, 4, 1392–1410,
https://doi.org/10.3390/rs4051392, 2012.
a
van der Kruk, J., Wapenaar, C. P. A., Fokkema, J. T., and Van den Berg, P. M.:
Three-dimensional imaging of multicomponent ground-penetrating radar data,
Geophysics, 68, 1241–1254,
https://doi.org/10.1190/1.1598116, 2003.
a
Washburn, A. L.: Geocryology – A survey of periglacial
processes and environments, University of Washington, ISBN 0-470-26582-5, 1979. a
Williams, K. E., McKay, C. P., Toon, O. B., and Jennings, K. S.: Mass
balance of two perennial snowfields: Niwot Ridge, Colorado, and the Ulaan Taiga,
Mongolia, Arct. Antarct. Alp. Res., 54, 41–61,
https://doi.org/10.1080/15230430.2022.2027591, 2022.
a
Yakupov, V. S.: Electrical conductyvity of frozen roks,
Permafrost: Second International Conference, 13–28 July,
National Academy of Sciences, Washington, D.C., ISBN 0-309-02746-2, 1973. a
Zemp, M.: Glaciers and Climate Change – Spatio-temporal Analysis of Glacier
Fluctuations in the European Alps after 1850, Dissertation, Zürich, 2006. a
Zhao, W., Tian, G., Forte, E., Pipan, M., Wang, Y., Li, X., Shi, Z., and Liu, H.:
Advances in GPR data acquisition and analysis for archaeology
Geophys. J. Int., 202, 62–71, 2015. a
Zhao, W., Forte, E., Colucci, R. R., and Pipan, M.: High-resolution glacier imaging
and characterization by means of GPR attribute analysis, Geophys. J.
Int., 206, 1366–1374,
https://doi.org/10.1093/gji/ggw208, 2016.
a