Articles | Volume 16, issue 11
https://doi.org/10.5194/tc-16-4727-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4727-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Broadband spectral induced polarization for the detection of Permafrost and an approach to ice content estimation – a case study from Yakutia, Russia
Jan Mudler
CORRESPONDING AUTHOR
Technische Universität Braunschweig, Institut für Geophysik und extraterrestrische Physik, Braunschweig, Germany
Andreas Hördt
Technische Universität Braunschweig, Institut für Geophysik und extraterrestrische Physik, Braunschweig, Germany
Dennis Kreith
Technische Universität Braunschweig, Institut für Geophysik und extraterrestrische Physik, Braunschweig, Germany
Madhuri Sugand
Technische Universität Braunschweig, Institut für Geophysik und extraterrestrische Physik, Braunschweig, Germany
Kirill Bazhin
Melnikov Permafrost Institute, Russian Academy of Science, Yakutsk, Russia
Lyudmila Lebedeva
Melnikov Permafrost Institute, Russian Academy of Science, Yakutsk, Russia
Tino Radić
Radic Research, Berlin, Germany
Related authors
Jan Mudler, Andreas Hördt, Anita Przyklenk, Gianluca Fiandaca, Pradip Kumar Maurya, and Christian Hauck
The Cryosphere, 13, 2439–2456, https://doi.org/10.5194/tc-13-2439-2019, https://doi.org/10.5194/tc-13-2439-2019, 2019
Short summary
Short summary
The capacitively coupled resistivity (CCR) method enables the determination of frequency-dependent electrical parameters of the subsurface. CCR is well suited for application in cryospheric areas because it provides logistical advantages regarding coupling on hard surfaces and highly resistive grounds. With our new spectral two-dimensional inversion, we can identify subsurface structures based on full spectral information. We show the first results of the inversion method on the field scale.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-290, https://doi.org/10.5194/essd-2024-290, 2024
Preprint under review for ESSD
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We want to understand changes to the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Jan Mudler, Andreas Hördt, Anita Przyklenk, Gianluca Fiandaca, Pradip Kumar Maurya, and Christian Hauck
The Cryosphere, 13, 2439–2456, https://doi.org/10.5194/tc-13-2439-2019, https://doi.org/10.5194/tc-13-2439-2019, 2019
Short summary
Short summary
The capacitively coupled resistivity (CCR) method enables the determination of frequency-dependent electrical parameters of the subsurface. CCR is well suited for application in cryospheric areas because it provides logistical advantages regarding coupling on hard surfaces and highly resistive grounds. With our new spectral two-dimensional inversion, we can identify subsurface structures based on full spectral information. We show the first results of the inversion method on the field scale.
Olga Makarieva, Nataliia Nesterova, David Andrew Post, Artem Sherstyukov, and Lyudmila Lebedeva
The Cryosphere, 13, 1635–1659, https://doi.org/10.5194/tc-13-1635-2019, https://doi.org/10.5194/tc-13-1635-2019, 2019
Short summary
Short summary
The streamflow of Arctic rivers is changing. We analyzed available data (22 gauges, 1936–2015) in the basins of the Yana and Indigirka rivers completely located within the continuous permafrost zone. The results show that the main factor of increasing low flows is the shift from snow to rain due to warming. Other factors related to the release of water from permafrost, glaciers, or aufeis may fractionally contribute to streamflow increase but cannot be quantified based on available data.
Olga Makarieva, Nataliia Nesterova, Lyudmila Lebedeva, and Sergey Sushansky
Earth Syst. Sci. Data, 10, 689–710, https://doi.org/10.5194/essd-10-689-2018, https://doi.org/10.5194/essd-10-689-2018, 2018
Short summary
Short summary
This article describes the dataset of the Kolyma Water-Balance Station located at the upstreams of the Kolyma River (Russia). The dataset combines continuous long-term (1948–1997) observations of water balance, hydrological processes, and permafrost. It allows for study of permafrost hydrology interaction processes in a practically unexplored region. We highlight the main historical stages of the station's existence and its scientific significance, and outline the prospects for its future.
O. M. Semenova, L. S. Lebedeva, N. V. Nesterova, and T. A. Vinogradova
Proc. IAHS, 371, 157–162, https://doi.org/10.5194/piahs-371-157-2015, https://doi.org/10.5194/piahs-371-157-2015, 2015
L. S. Lebedeva, O. M. Semenova, T. A. Vinogradova, M. N. Kruchin, and N. V. Volkova
Proc. IAHS, 370, 161–165, https://doi.org/10.5194/piahs-370-161-2015, https://doi.org/10.5194/piahs-370-161-2015, 2015
Cited articles
Aarhus University: AarhusInv, https://hgg.au.dk/software/aarhusinv/, last access: 7 November 2022. a
Artemov, V.: A unified mechanism for ice and water electrical conductivity
from direct current to terahertz, Phys. Chem. Chem. Phys., 21, 8067–8072,
https://doi.org/10.1039/c9cp00257j, 2019. a, b
Artemov, V. and Volkov, A.: Water and Ice Dielectric Spectra Scaling at 0 ∘C, Ferroelectrics, 466, 158–165, https://doi.org/10.1080/00150193.2014.895216,
2014. a, b, c
Auken, E., Christiansen, A., Kirkegaard, C., Fiandaca, G., Schamper,
C., Behroozmand, A., Binley, A., Nielsen, E., Effersø, F.,
Christensen, N., Sørensen, K., Foged, N., and Vignoli, G.: An
overview of a highly versatile forward and stable inverse algorithm for
airborne, ground-based and borehole electromagnetic and electric data,
Explor. Geophys., 46, 223–235, https://doi.org/10.1071/EG13097, 2014. a, b
Auty, R. and Cole, R.: Dielectric Properties of Ice and Solid D2O, J. Chem.
Phys., 20, 1309–1314, https://doi.org/10.1063/1.1700726, 1952. a, b
Cole, K. and Cole, R.: Dispersion and Absorption in Dielectrics:
1.Alternating Current Characteristics, J. Chem. Phys., 9, 341–351,
https://doi.org/10.1063/1.1750906, 1941. a
Fiandaca, G., Ramm, J., Binley, A., Gazoty, A., Christiansen, A., and
Auken, E.: Resolving spectral information from time domain induced
polarization data through 2-D inversion, Geophys. J. Int., 192, 631–646,
https://doi.org/10.1093/gji/ggs060, 2013. a
Fiandaca, G., Christiansen, A., and Auken, E.: Depth of Investigation
for Multi-parameters Inversions, European Association of Geoscientists and
Engineers, Near Surface Geoscience 2015, Conference Paper, 631–646,
https://doi.org/10.3997/2214-4609.201413797, 2015. a, b
Flores Orozco, A., Kemna, A., and Zimmermann, E.: Data error
quantification in spectral induced polarization imaging, Geophysics, 77, E227–E237, https://doi.org/10.1190/geo2010-0194.1, 2012. a
Grimm, R., Stillman, D., and MacGregor, J.: Dielectric signatures and
evolution of glacier ice, J. Glaciol., 61, 1159–1170,
https://doi.org/10.3189/2015JoG15J113, 2015. a
Hauck, C. and Kneisel, C.: Applied Geophysics in Periglacial
Environments, Cambridge Univ. Press, https://doi.org/10.1017/CBO9780511535628, 2008. a, b
Hauck, C., Böttcher, M., and Maurer, H.: A new model for estimating subsurface ice content based on combined electrical and seismic data sets, The Cryosphere, 5, 453–468, https://doi.org/10.5194/tc-5-453-2011, 2011. a, b
Heginbottom, J., Brown, J., Humlum, O., and Sennson, H.: Permafrost
and periglacial environments, in: State of the Earth's Cryosphere at the
Beginning of the 21st Century, edited by: Williams, R. and Ferrigno, J., USGS
Professional Paper 1386-A-5, p. 546, https://doi.org/10.3133/pp1386A, 2012. a
Hippel, A.: The Dielectric Relaxation Spectra of Water, Ice and Aqueous
Solutions, and their Interpretation, IEEE T. Electr. Insul., 23, 801–816, https://doi.org/10.1109/14.8744, 1988. a
Hobbs, P.: Ice Physics, Oxford Classic Texts in the Physical Sciences,
Oxford University Press, ISBN 9780199587711, 2010. a
Hördt, A., Weidelt, P., and Przyklenk, A.: Contact impedance of
grounded and capacitive electrodes, Geophys. J. Int., 193, 187–196,
https://doi.org/10.1093/gji/ggs091, 2013. a
Kemna, A., Binley, A., Ramirez, A., and William, D.: Complex
resistivity tomography for environmental applications, Chem. Eng. J., 77, 11–18, https://doi.org/10.1016/S1385-8947(99)00135-7, 2000. a
Kozhevnikov, N. and Antonov, E.: Fast-decaying inductively induced
polarization in frozen ground: A synthesis of results and models, J. Appl.
Geophys., 82, 171–183, https://doi.org/10.1016/j.jappgeo.2012.03.008, 2012. a, b
Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A.:
Complex conductivity of water-saturated packs of glass beads, J. Colloid
Interface Sci., 321/1, 103–117, https://doi.org/10.1016/j.jcis.2007.12.031, 2008. a
Limbrock, J. K., Weigand, M., and Kemna, A.: Improved thermal characterization of alpine permafrost sites by broadband SIP measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20081, https://doi.org/10.5194/egusphere-egu2020-20081, 2020. a
Loewer, M., Günther, T., Igel, J., Kruschwitz, S., Martin, T., and
Wagner, N.: Ultra-broadband electrical spectroscopy of soils and sediments
– a combined permittivity and conductivity model, Geophys. J. Int., 210, 1360–1373, https://doi.org/10.1093/gji/ggx242, 2017. a, b
Militzer, H. and Weber, F.: Angewandte Geophysik, Band 2:
Geoelektrik-Geothermik-Radiometrie-Aerogeophysik, Springer Wien,
Akademie-Verlag Berlin, ISBN 9783211817971, 1985. a
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., and Hauck, C.: Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, 2019. a
Mollaret, C., Wagner, F., Hilbich, C., Scapozza, C., and Hauck, C.:
Petrophysical Joint Inversion Applied to Alpine Permafrost Field Sites to
Image Subsurface Ice, Water, Air, and Rock Contents, Front. Earth Sci., 8, 85, https://doi.org/10.3389/feart.2020.00085, 2020. a
Mudler, J., Hördt, A., Przyklenk, A., Fiandaca, G., Maurya, P. K., and Hauck, C.: Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method – first applications in periglacial environments, The Cryosphere, 13, 2439–2456, https://doi.org/10.5194/tc-13-2439-2019, 2019. a, b, c, d, e, f, g
Olhoeft, G. R.: Electrical properties of natural clay permafrost, Can. J.
Earth Sci., 14, 16–24, https://doi.org/10.1139/e77-002, 1977. a
Petrenko, V.: On the nature of electrical polarization of materials caused by
cracks. Application to ice electromagnetic emission, Philos, Mag, B, 67,
301–315, https://doi.org/10.1080/13642819308220134, 1993. a
Petrenko, V. and Ryzhkin, I.: Surface States of Charge Carriers and Electrical
Properties of the Surface Layer of Ice, J. Phys. Chem. B, 101, 6285–6289,
https://doi.org/10.1021/jp963216p, 1997. a
Przyklenk, A., Hördt, A., and Radić, T.: Capacitively-Coupled
Resistivity measurements to determine frequency-dependent electrical
parameters in periglacial environments – theoretical considerations and first
field tests, Geophys. J. Int., 206, 1352–1365, https://doi.org/10.1093/gji/ggw178,
2016. a, b, c
Radić, T.: First Results from the New Multi-purpose Instrument CapGeo,
19th European Meeting of Environmental and Engeneering Geophysics, Near
Surf. Geosci., TuP15, https://doi.org/10.3997/2214-4609.20131364, 2013. a
Radić, T. and Klitzsch, N.: Compensation technique to minimize
capacitive cable coupling effects in multi-channel IP systems, in: 18th
European Meeting of Environmental and Engineering Geophysics, Near Surf.
Geosci., P029, https://doi.org/10.3997/2214-4609.20143487, 2012. a
Ramirez, A., Daily, W., Binley, A., and LaBrecque, D.: Electrical
Impedance Tomography of Known Targets, J. Environ. Eng. Geoph., 4, 11–26,
https://doi.org/10.4133/JEEG4.1.11, 1999. a
Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I., Deng,
Y., Delsman, J., Pauw, P., Karaoulis, M., de Louw, P., van Baaren,
E., Dabekaussen, W., Menkovic, A., and Gunnink, J.: Complex
conductivity of soils, Water Resour. Res., 53/8, 7121–7147,
https://doi.org/10.1002/2017WR020655, 2017. a, b
Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source
library for modelling and inversion in geophysics, Comput. Geosci., 109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017. a
Sasaki, K., Kita, R., Shinyashiki, N., and Yagihara, S.: Dielectric
Relaxation Time of Ice-Ih with Different Preparation, J. Phys. Chem. B, 120,
3950–3953, https://doi.org/10.1021/acs.jpcb.6b01218, 2016. a, b, c
Schuur, E., McGuire, A., Schädel, C., Grosse, G., Harden, J.,
Hayes, D., Hugelius, G., Koven, C., Kuhry, P., Lawrence, D.,
Natali, S., Olefeldt, D., Romanovsky, V., Schaefer, K., Turetsky,
M., Treat, C., and Vonk, J.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015. a
Stillman, D. and Grimm, R.: Low-Frequency Electrical Properties of
Ice-Silicate Mixtures Regoliths, J. Phys. Chem.-US, 114, 6065–6073,
https://doi.org/10.1021/jp9070778, 2010. a, b, c
Volkmann, J. and Klitzsch, N.: Wideband impedance spectroscopy from 1 mHz to 10 MHz by combination of four- and two-electrode methods, J. Appl. Geophys., 114,
191–201, https://doi.org/10.1016/j.jappgeo.2015.01.012, 2015. a
Wagner, F., Mollaret, C., Günther, T., Kemna, A., and Hauck, C.: Quantitative
imaging of water, ice and air in permafrost systems through petrophysical
joint inversion of seismic refraction and electrical resistivity data,
Geophys. J. Int., 219, 1866–1875, https://doi.org/10.1093/gji/ggz402, 2019.
a, b
Watanabe, K. and Mizoguchi, M.: Amount of unfrozen water in frozen porous media
saturated with solution, Cold Reg. Sci. Technol., 34, 103–110,
https://doi.org/10.1016/S0165-232X(01)00063-5, 2002. a
Weidelt, P.: Grundlagen der Geoelektrik, in: Handbuch zur Erkundung des
Untergrundes von Deponien und Altlasten, edited by: Knödel, K., Krummel,
H., and Lange, G., Band 3: Geophysik, Springer, Berlin, 65–94, ISBN 9783540266068, 1997. a
Short summary
The spectral electrical signal of ice exhibits a strong characteristic behaviour in the frequency range from 100 Hz to 100 kHz, due to polarization effects. With our geophysical method, we can analyse this characteristic to detect subsurface ice. Moreover, we use a model to quantify 2-D ground ice content based on our data. The potential of our new measurement device is showed up. Data were taken on a permafrost site in Yakutia, and the results are in agreement with other existing field data.
The spectral electrical signal of ice exhibits a strong characteristic behaviour in the...