Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability in sea ice carbonate chemistry: a case study comparing the importance of ikaite precipitation, bottom-ice algae, and currents across an invisible polynya
Brent G. T. Else
CORRESPONDING AUTHOR
Department of Geography, University of Calgary, Calgary, Alberta, Canada
Araleigh Cranch
Department of Geography, University of Calgary, Calgary, Alberta, Canada
Richard P. Sims
Department of Geography, University of Calgary, Calgary, Alberta, Canada
now at: College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
Samantha Jones
Department of Geography, University of Calgary, Calgary, Alberta, Canada
Laura A. Dalman
Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada
now at: Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Christopher J. Mundy
Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada
Rebecca A. Segal
Arctic Eider Society, Sanikiluaq, Nunavut, Canada
SmartIce Sea Ice Monitoring & Information Inc., St. John's, Newfoundland, Canada
Randall K. Scharien
Department of Geography, University of Victoria, Victoria, British Columbia, Canada
Tania Guha
Department of Geography, University of Calgary, Calgary, Alberta, Canada
Related authors
Richard P. Sims, Mohamed M. M. Ahmed, Brian J. Butterworth, Patrick J. Duke, Stephen F. Gonski, Samantha F. Jones, Kristina A. Brown, Christopher J. Mundy, William J. Williams, and Brent G. T. Else
Ocean Sci., 19, 837–856, https://doi.org/10.5194/os-19-837-2023, https://doi.org/10.5194/os-19-837-2023, 2023
Short summary
Short summary
Using a small research vessel based out of Cambridge Bay in the Kitikmeot Sea (Canadian Arctic Archipelago), we were able to make measurements of surface ocean pCO2 shortly after sea ice breakup for 4 consecutive years. We compare our measurements to previous underway measurements and the two ongoing ocean carbon observatories in the region. We identify high interannual variability and a potential bias in previous estimates due to lower pCO2 in bays and inlets.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Charel Wohl, David Capelle, Anna Jones, William T. Sturges, Philip D. Nightingale, Brent G. T. Else, and Mingxi Yang
Ocean Sci., 15, 925–940, https://doi.org/10.5194/os-15-925-2019, https://doi.org/10.5194/os-15-925-2019, 2019
Short summary
Short summary
In this paper we present a gas equilibrator that can be used to equilibrate gases continuously or in discrete samples from seawater into a carrier gas. The headspace is analysed by a commercially available proton-transfer-reaction mass spectrometer. This allows for the measurement of a broad range of dissolved gases up to a very high solubility in seawater. The main advantage of this equilibrator is its unique design and ease of reproducibility.
Brian J. Butterworth and Brent G. T. Else
Atmos. Meas. Tech., 11, 6075–6090, https://doi.org/10.5194/amt-11-6075-2018, https://doi.org/10.5194/amt-11-6075-2018, 2018
Short summary
Short summary
This study measured how quickly carbon dioxide was absorbed/released from sea ice to the air. We used a method that had never been tested over landlocked sea ice. To avoid water vapor ruining the carbon dioxide measurement, we dried the sample air before it went to the gas analyzer. This gave values that were more credible than those found by previous studies. We showed that this method will be useful for studying the processes which affect carbon dioxide exchange between sea ice and air.
Nicolas-Xavier Geilfus, Ryan J. Galley, Brent G. T. Else, Karley Campbell, Tim Papakyriakou, Odile Crabeck, Marcos Lemes, Bruno Delille, and Søren Rysgaard
The Cryosphere, 10, 2173–2189, https://doi.org/10.5194/tc-10-2173-2016, https://doi.org/10.5194/tc-10-2173-2016, 2016
Short summary
Short summary
The fate of ikaite precipitation within sea ice is poorly understood. In this study, we estimated ikaite precipitation of up to 167 µmol kg-1 within sea ice, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64–66 μmol kg-1. We estimated that more than half of the total ikaite precipitated was still contained in the ice when sea ice began to melt. The dissolution of the ikaite crystals in the water column kept the seawater pCO2 undersaturated.
Odile Crabeck, Ryan Galley, Bruno Delille, Brent Else, Nicolas-Xavier Geilfus, Marcos Lemes, Mathieu Des Roches, Pierre Francus, Jean-Louis Tison, and Søren Rysgaard
The Cryosphere, 10, 1125–1145, https://doi.org/10.5194/tc-10-1125-2016, https://doi.org/10.5194/tc-10-1125-2016, 2016
Short summary
Short summary
We present a new non-destructive X-ray-computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. While the internal layers showed air-volume fractions < 2 %, the ice–air interface (top 2 cm) showed values up to 5 %. As a result of the presence of large bubbles and higher air volume fraction measurements in sea ice, we introduce new perspectives on processes regulating gas exchange at the ice–atmosphere interface.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Richard P. Sims, Mohamed M. M. Ahmed, Brian J. Butterworth, Patrick J. Duke, Stephen F. Gonski, Samantha F. Jones, Kristina A. Brown, Christopher J. Mundy, William J. Williams, and Brent G. T. Else
Ocean Sci., 19, 837–856, https://doi.org/10.5194/os-19-837-2023, https://doi.org/10.5194/os-19-837-2023, 2023
Short summary
Short summary
Using a small research vessel based out of Cambridge Bay in the Kitikmeot Sea (Canadian Arctic Archipelago), we were able to make measurements of surface ocean pCO2 shortly after sea ice breakup for 4 consecutive years. We compare our measurements to previous underway measurements and the two ongoing ocean carbon observatories in the region. We identify high interannual variability and a potential bias in previous estimates due to lower pCO2 in bays and inlets.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023, https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Short summary
Coherent flow patterns in sea ice have a significant influence on sea ice fracture and refreezing. We can better understand the state of sea ice, and its influence on the atmosphere and ocean, if we understand these structures. By adapting recent developments in chaotic dynamical systems, we are able to approximate ice stretching surrounding individual ice buoys. This illuminates the state of sea ice at much higher resolution and allows us to see previously invisible ice deformation patterns.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Stephen E. L. Howell, Randall K. Scharien, Jack Landy, and Mike Brady
The Cryosphere, 14, 4675–4686, https://doi.org/10.5194/tc-14-4675-2020, https://doi.org/10.5194/tc-14-4675-2020, 2020
Short summary
Short summary
Melt ponds form on the surface of Arctic sea ice during spring and have been shown to exert a strong influence on summer sea ice area. Here, we use RADARSAT-2 satellite imagery to estimate the predicted peak spring melt pond fraction in the Canadian Arctic Archipelago from 2009–2018. Our results show that RADARSAT-2 estimates of peak melt pond fraction can be used to provide predictive information about summer sea ice area within certain regions of the Canadian Arctic Archipelago.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Charel Wohl, David Capelle, Anna Jones, William T. Sturges, Philip D. Nightingale, Brent G. T. Else, and Mingxi Yang
Ocean Sci., 15, 925–940, https://doi.org/10.5194/os-15-925-2019, https://doi.org/10.5194/os-15-925-2019, 2019
Short summary
Short summary
In this paper we present a gas equilibrator that can be used to equilibrate gases continuously or in discrete samples from seawater into a carrier gas. The headspace is analysed by a commercially available proton-transfer-reaction mass spectrometer. This allows for the measurement of a broad range of dissolved gases up to a very high solubility in seawater. The main advantage of this equilibrator is its unique design and ease of reproducibility.
Brian J. Butterworth and Brent G. T. Else
Atmos. Meas. Tech., 11, 6075–6090, https://doi.org/10.5194/amt-11-6075-2018, https://doi.org/10.5194/amt-11-6075-2018, 2018
Short summary
Short summary
This study measured how quickly carbon dioxide was absorbed/released from sea ice to the air. We used a method that had never been tested over landlocked sea ice. To avoid water vapor ruining the carbon dioxide measurement, we dried the sample air before it went to the gas analyzer. This gave values that were more credible than those found by previous studies. We showed that this method will be useful for studying the processes which affect carbon dioxide exchange between sea ice and air.
Nicolas-Xavier Geilfus, Ryan J. Galley, Brent G. T. Else, Karley Campbell, Tim Papakyriakou, Odile Crabeck, Marcos Lemes, Bruno Delille, and Søren Rysgaard
The Cryosphere, 10, 2173–2189, https://doi.org/10.5194/tc-10-2173-2016, https://doi.org/10.5194/tc-10-2173-2016, 2016
Short summary
Short summary
The fate of ikaite precipitation within sea ice is poorly understood. In this study, we estimated ikaite precipitation of up to 167 µmol kg-1 within sea ice, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64–66 μmol kg-1. We estimated that more than half of the total ikaite precipitated was still contained in the ice when sea ice began to melt. The dissolution of the ikaite crystals in the water column kept the seawater pCO2 undersaturated.
Odile Crabeck, Ryan Galley, Bruno Delille, Brent Else, Nicolas-Xavier Geilfus, Marcos Lemes, Mathieu Des Roches, Pierre Francus, Jean-Louis Tison, and Søren Rysgaard
The Cryosphere, 10, 1125–1145, https://doi.org/10.5194/tc-10-1125-2016, https://doi.org/10.5194/tc-10-1125-2016, 2016
Short summary
Short summary
We present a new non-destructive X-ray-computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. While the internal layers showed air-volume fractions < 2 %, the ice–air interface (top 2 cm) showed values up to 5 %. As a result of the presence of large bubbles and higher air volume fraction measurements in sea ice, we introduce new perspectives on processes regulating gas exchange at the ice–atmosphere interface.
L. Istomina, G. Heygster, M. Huntemann, P. Schwarz, G. Birnbaum, R. Scharien, C. Polashenski, D. Perovich, E. Zege, A. Malinka, A. Prikhach, and I. Katsev
The Cryosphere, 9, 1551–1566, https://doi.org/10.5194/tc-9-1551-2015, https://doi.org/10.5194/tc-9-1551-2015, 2015
R. K. Scharien, J. Landy, and D. G. Barber
The Cryosphere, 8, 2147–2162, https://doi.org/10.5194/tc-8-2147-2014, https://doi.org/10.5194/tc-8-2147-2014, 2014
R. K. Scharien, K. Hochheim, J. Landy, and D. G. Barber
The Cryosphere, 8, 2163–2176, https://doi.org/10.5194/tc-8-2163-2014, https://doi.org/10.5194/tc-8-2163-2014, 2014
Related subject area
Discipline: Sea ice | Subject: Biogeochemistry/Biology
Methane cycling within sea ice: results from drifting ice during late spring, north of Svalbard
Josefa Verdugo, Ellen Damm, and Anna Nikolopoulos
The Cryosphere, 15, 2701–2717, https://doi.org/10.5194/tc-15-2701-2021, https://doi.org/10.5194/tc-15-2701-2021, 2021
Short summary
Short summary
We show that the ice structures determine the fate of methane during the early melt season and that sea ice may act as a sink of methane when methane oxidation occurs in specific layers of thick and complex sea ice. In spring, when ice melt starts, sea ice methane released into the ocean is the favored pathway. We suggest that changes in ice cover are thus likely to change the methane pathways in the Arctic Ocean and sea ice as a potential source of methane supersaturation in surface waters.
Cited articles
Back, D.-Y., Ha, S.-Y., Else, B., Hanson, M., Jones, S. F., Shin, K.-H.,
Tatarek, A., Wiktor, J. M., Cicek, N., Alam, S., and Mundy, C. J.: On the
impact of wastewater effluent on phytoplankton in the Arctic coastal zone: A
case study in the Kitikmeot Sea of the Canadian Arctic, Sci. Total
Environ., 759, 143861, https://doi.org/10.1016/j.scitotenv.2020.143861, 2021.
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009.
Brown, K. A., Miller, L. A., Mundy, C. J., Papakyriakou, T., Francois, R.,
Gosselin, M., Carnat, G., Swystun, K., and Tortell, P. D.: Inorganic carbon
system dynamics in landfast Arctic Sea ice during the early-melt period, J.
Geophys. Res.-Oceans, 120, 3542–3566, https://doi.org/10.1002/2014JC010620, 2015.
Burt, J. E., Barber, G. M., and Rigby, D. L.: Elementary Statistics for
Geographers, 3rd edn., The Guilford Press, New York, 653 pp., ISBN-13: 978-1572304840, 2009.
Cai, W.-J., Hu, X., Huang, W.-J., Jiang, L.-Q., Wang, Y., Peng, T.-H., and
Zhang, X.: Alkalinity distribution in the western North Atlantic Ocean
margins, J. Geophys. Res., 115, C08014, https://doi.org/10.1029/2009JC005482, 2010.
Campbell, K., Mundy, C. J., Barber, D. G., and Gosselin, M.: Remote
Estimates of Ice Algae Biomass and Their Response to Environmental
Conditions during Spring Melt, Arctic, 67, 375–387, https://doi.org/10.14430/arctic4409, 2014.
Campbell, K., Mundy, C. J., Barber, D. G., and Gosselin, M.: Characterizing
the sea ice algae chlorophyll a–snow depth relationship over Arctic spring
melt using transmitted irradiance, J. Marine Syst., 147, 76–84, https://doi.org/10.1016/j.jmarsys.2014.01.008, 2015.
Campbell, K., Mundy, C. J., Landy, J. C., Delaforge, A., Michel, C., and
Rysgaard, S.: Community dynamics of bottom-ice algae in Dease Strait of the
Canadian Arctic, Prog. Oceanogr., 149, 27–39,
https://doi.org/10.1016/j.pocean.2016.10.005, 2016.
Campbell, K., Lange, B. A., Landy, J. C., Katlein, C., Nicolaus, M., Anhaus,
P., Matero, I., Gradinger, R., Charette, J., Duerksen, S., Tremblay, P.,
Rysgaard, S., Tranter, M., Haas, C., and Michel, C.: Net heterotrophy in High
Arctic first-year and multi-year spring sea ice, Elementa: Science of the
Anthropocene, 10, 00040, https://doi.org/10.1525/elementa.2021.00040, 2022.
Carnat, G., Papakyriakou, T., Geilfus, N., Brabant, F., Delille, B.,
Vancoppenolle, M., Gilson, G., Zhou, J., and Tison, J.: Investigations on
physical and textural properties of Arctic first-year sea ice in the
Amundsen Gulf, Canada, November 2007–June 2008 (IPY-CFL system study), J.
Glaciol., 59, 819–837, https://doi.org/10.3189/2013JoG12J148, 2013.
Chalmers, B. and Williamson, R. B.: Crystal Multiplication without Nucleation, Science, 148, 1717–1718, https://doi.org/10.1126/science.148.3678.1717, 1965.
Comiso, J. C., Cavalieri, D. J., and Markus, T.: Sea ice concentration, ice
temperature and snow depth using AMSR-E data, IEEE Geosci. Remote
S., 41, 243–252, https://doi.org/10.1109/TGRS.2002.808317, 2003.
Cox, G. F. N. and Weeks, W. F.: Salinity Variations in Sea Ice, J. Glaciol.,
13, 109–120, https://doi.org/10.3189/S0022143000023418, 1974.
Cox, G. F. N. and Weeks, W. F.: Brine drainage and initial salt entrapment
in sodium chloride ice, CRREL Res. Rep. 345, U.S. Army Cold Reg. Res. and
Eng. Lab., Hanover, NH, 1975.
Dalman, L. A., Else, B. G. T., Barber, D., Carmack, E., Williams, W. J.,
Campbell, K., Duke, P. J., Kirillov, S., and Mundy, C. J.: Enhanced
bottom-ice algal biomass across a tidal strait in the Kitikmeot Sea of the
Canadian Arctic, Elementa: Science of the Anthropocene, 7, 22,
https://doi.org/10.1525/elementa.361, 2019.
Delille, B., Jourdain, B., Borges, A. V., Tison, J.-L., and Delille, D.:
Biogas (CO2, O2, dimethylsulfide) dynamics in Spring Antarctic
fast ice, Limnol. Oceanogr., 52, 1367–1379, https://doi.org/10.4319/lo.2007.52.4.1367, 2007.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to Best
Practices for Ocean CO2 Measurements, Sidney, British Columbia, North
Pacific Marine Science Organization, PICES Special Publication, 3, 191 pp., https://doi.org/10.25607/OBP-1342, 2007.
Dieckmann, G. S., Nehrke, G., Papadimitriou, S., Göttlicher, J.,
Steininger, R., Kennedy, H., Wolf-Gladrow, D., and Thomas, D. N.: Calcium
carbonate as ikaite crystals in Antarctic Sea ice, Geophys. Res. Lett., 35,
L08501, https://doi.org/10.1029/2008GL033540, 2008.
Dieckmann, G. S., Nehrke, G., Uhlig, C., Göttlicher, J., Gerland, S., Granskog, M. A., and Thomas, D. N.: Brief Communication: Ikaite (CaCO3⋅6H2O) discovered in Arctic sea ice, The Cryosphere, 4, 227–230, https://doi.org/10.5194/tc-4-227-2010, 2010.
Eicken, H.: Salinity profiles of Antarctic Sea ice: Field data and model
results, J. Geophys. Res., 97, 15545–15557,
https://doi.org/10.1029/92JC01588, 1992.
Feltham, D. L., Worster, M. G., and Wettlaufer, J. S.: The influence of
ocean flow on newly forming sea ice, J. Geophys. Res., 107, 1-1–1-9, https://doi.org/10.1029/2000JC000559, 2002.
Findlay, H. S., Edwards, L. A., Lewis, C. N., Cooper, G. A., Clement, R.,
Hardman-Mountford, N., Vagle, S., and Miller, L. A.: Late winter
biogeochemical conditions under sea ice in the Canadian High Arctic, Polar
Res., 34, 24170, https://doi.org/10.3402/polar.v34.24170, 2015.
Flato, G. M. and Brown, R. D.: Variability and climate sensitivity of
landfast Arctic Sea ice, J. Geophys. Res., 101, 25767–25777, https://doi.org/10.1029/96JC02431, 1996.
Friis, K., Körtzinger, A., and Wallace, D. W. R.: The salinity
normalization of marine inorganic carbon chemistry data, Geophys. Res.
Lett., 30, 1085, https://doi.org/10.1029/2002GL015898, 2003.
Galley, R. J., Else, B. G. T., Howell, S. E. L., Lukovich, J. V., and
Barber, D. G.: Landfast Sea Ice Conditions in the Canadian Arctic:
1983–2009, Arctic, 65, 133–144, https://www.jstor.org/stable/41638586 (last access: 10 June 2022), 2012.
Geilfus, N.-X., Carnat, G., Papakyriakou, T., Tison, J.-L., Else, B.,
Thomas, H., Shadwick, E., and Delille, B.: Dynamics of pCO2 and related
air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort
Sea), J. Geophys. Res., 117, C00G10, https://doi.org/10.1029/2011JC007118, 2012.
Geilfus, N.-X., Galley, R. J., Cooper, M., Halden, N., Hare, A., Wang, F.,
Søgaard, D. H., and Rysgaard, S.: Gypsum crystals observed in
experimental and natural sea ice, Geophys. Res. Lett., 40, 6362–6367, https://doi.org/10.1002/2013GL058479, 2013.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis,
3rd edn., Wiley-VCH, Weinheim, 632 pp., ISBN: 9783527295890, 1999.
Grimm, R., Notz, D., Glud, R. N., Rysgaard, S., and Six, K. D.: Assessment
of the sea-ice carbon pump: Insights from a three-dimensional
ocean-sea-ice-biogeochemical model (MPIOM/HAMOCC), Elementa: Science of the
Anthropocene, 4, 000136, https://doi.org/10.12952/journal.elementa.000136, 2016.
Holm-Hansen, O., Lorenzen, J., Holmes, R. W., and Strickland, J. D.:
Fluorometric determination of chlorophyll, ICES J. Mar. Sci., 30, 3–15, https://doi.org/10.1093/icesjms/30.1.3, 1965.
Howell, S. E. L., Laliberté, F., Kwok, R., Derksen, C., and King, J.: Landfast ice thickness in the Canadian Arctic Archipelago from observations and models, The Cryosphere, 10, 1463–1475, https://doi.org/10.5194/tc-10-1463-2016, 2016.
Hu, Y., Wang, F., Boone, W., Barber, D., and Rysgaard, S..: Assessment and
improvement of the sea ice processing for dissolved inorganic carbon
analysis, Limnol. Oceanogr.-Meth., 16, 83–91, https://doi.org/10.1002/lom3.10229, 2018.
Jiang, L.-Q., Cai, W.-J., and Wang, Y.: A comparative study of carbon
dioxide degassing in river- and marine-dominated estuaries, Limnol.
Oceanogr., 53, 2603–2615, https://doi.org/10.4319/lo.2008.53.6.2603, 2008.
König, D., Miller, L. A., Simpson, K. G., and Vagle, S.: Carbon Dynamics
During the Formation of Sea Ice at Different Growth Rates, Front. Earth
Sci., 6, 234, https://doi.org/10.3389/feart.2018.00234, 2018.
Lange, B. A., Haas, C., Charette, J., Katlein, C., Campbell, K., Duerksen,
S., Coupel, P., Anhaus, P., Jutila, A., Tremblay, P. O. G., Carlyle, C. G.,
and Michel, C.: Contrasting Ice Algae and Snow-Dependent Irradiance
Relationships Between First-Year and Multiyear Sea Ice, Geophys. Res. Lett.,
46, 10834–10843, https://doi.org/10.1029/2019GL082873, 2019.
Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin,
M., Juul-Pedersen, T., and Gradinger, R.: Arctic spring awakening –
Steering principles behind the phenology of vernal ice algal blooms,
Prog. Oceanogr., 139, 151–170, https://doi.org/10.1016/j.pocean.2015.07.012, 2015.
Manizza, M., Menemenlis, D., Zhang, H., and Miller, C. E.: Modeling the
Recent Changes in the Arctic Ocean CO2 Sink (2006–2013), Global
Biogeochem. Cy., 33, 420–438, https://doi.org/10.1029/2018GB006070, 2019.
Martin, S. and Kauffman, P.: A Field and Laboratory Study of Wave Damping by
Grease Ice, J. Glaciol., 27, 283–313, https://doi.org/10.3189/S0022143000015392, 1981.
Meiners, K. M., Vancoppenolle, M., Thanassekos, S., Dieckmann, G. S.,
Thomas, D. N., Tison J.-L., Arrigo, K. R., Garrison, D. L., McMinn, A.,
Lannuzel, D., van der Merwe, P., Swadling, K. W., Smith Jr., W. O., Melnikov,
I., and Raymond, B.: Chlorophyll a in Antarctic sea ice from historical ice
core data, Geophys. Res. Lett., 39, L21602, https://doi.org/10.1029/2012gl053478, 2012.
Meiners, K. M., Vancoppenolle, M., Carnat, G., Castellani, G., Delille, B.,
Delille, D., Dieckmann, G. S., Flores, H., Fripiat, F., Grotti, M., Lange,
B. A., Lannuzel, D., Martin, A., McMinn, A., Nomura, D., Peeken, I., Rivaro,
P., Ryan, K. G., Stefels, J., Swadling, K. M., Thomas, D. N., Tison, J.-L.,
van der Merwe, P., van Leeuwe, M. A., Weldrick, C., and Yang, E. J.:
Chlorophyll-a in Antarctic landfast sea ice: A first synthesis of historical ice core data, J. Geophys. Res.-Oceans, 123, 8444–8459, https://doi.org/10.1029/2018JC014245, 2018.
Melling, H., Haas, C., and Brossier, E.: Invisible polynyas: Modulation of
fast ice thickness by ocean heat flux on the Canadian polar shelf, J.
Geophys. Res.-Oceans, 120, 777–795, https://doi.org/10.1002/2014JC010404, 2015.
Miller, L., Papakyriakou, T., Collins, R., Deming, J., Ehn, J., Macdonald,
R., Mucci, A., Owens, O., Raudsepp, M., and Sutherland, N.: Carbon dynamics
in Sea Ice: A Winter Flux Time Series, J. Geophys. Res., 116, C02028, https://doi.org/10.1029/2009JC006058, 2011a.
Miller, L. A., Carnat, G., Else, B. G. T., Sutherland, N., and Papakyriakou,
T. N.: Carbonate system evolution at the Arctic Ocean surface during autumn
freeze-up, J. Geophys. Res., 116, C00G04, https://doi.org/10.1029/2011JC007143, 2011b.
Miller, L. A., Fripiat, F., Else, B. G. T., Bowman, J. S., Brown, K. A.,
Collins, R. E., Ewert, M., Fransson, A., Gosselin, M., Lannuzel, D.,
Meiners, K. M., Michel, C., Nishioka, J., Nomura, D., Papadimitriou, S.,
Russell, L. M., Sørensen, L. L., Thomas, D. N., Tison, J.-L., van Leeuwe,
M. A., Vancoppenolle, M., Wolff, E. W., and Zhou, J.: Methods for
biogeochemical studies of sea ice: The state of the art, caveats, and
recommendations, Elementa: Science of the Anthropocene, 3, 000038,
https://doi.org/10.12952/journal.elementa.000038, 2015.
Moreau, S., Vancoppenolle, M., Delille, B., Tison, J.-L., Zhou, J.,
Kotovitch, M., Thomas, D. N., Geilfus, N.-X., and Goosse, H.: Drivers of
inorganic carbon dynamics in first-year sea ice: A model study, J. Geophys.
Res.-Oceans, 120, 471–495, https://doi.org/10.1002/2014JC010388, 2015.
Moreau, S., Vancoppenolle, M., Bopp, L., Aumont, O., Madec, G., Delille, B.,
Tison, J.-L., Barriat, P.-Y., and Goosse, H.: Assessment of the sea-ice
carbon pump: Insights from a three-dimensional ocean-sea-ice biogeochemical
model (NEMO-LIM-PISCES), Elementa: Science of the Anthropocene, 4,
000122, https://doi.org/10.12952/journal.elementa.000122, 2016.
Mortenson, E., Steiner, N., Monahan, A. H., Miller, L. A., Geilfus, N.-X.,
and Brown, K.: A Model-Based Analysis of Physical and Biogeochemical
Controls on Carbon Exchange in the Upper Water Column, Sea Ice, and
Atmosphere in a Seasonally Ice-Covered Arctic Strait, J. Geophys. Res.-Oceans, 123, 7529–7549, https://doi.org/10.1029/2018JC014376, 2018.
Mundy, C. J., Barber, D. G., and Michel, C.: Variability of snow and ice
thermal, physical and optical properties pertinent to sea ice algae biomass
during spring, J. Marine Sys., 58, 107–120, https://doi.org/10.1016/j.jmarsys.2005.07.003, 2005.
Nakawo, M. and Sinha, N. K.: Growth Rate and Salinity Profile of First-Year
Sea Ice in the High Arctic, J. Glaciol., 27, 315–330,
https://doi.org/10.3189/S0022143000015409, 1981.
Nomura, D., Yshikawa-Inoue, H., and Toyota, T.: The effect of sea ice growth on air-sea CO2 flux in a tank experiment, Tellus B, 58, 418–426, 2006.
Nomura, D., Yoshikawa-Inoue, H., Toyota, T., and Shirasawa, K.: Effects of snow, snowmelting and refreezing processes on air-sea ice CO2 flux, J. Glaciol., 56, 262–270, 2010.
Nomura, D., Yoshikawa-Inoue, H., Kobayashi, S., Nakaoka, S., Nakata, K., and Hashida, G.: Winter-to-summer evolution of pCO2 in surface water and air–sea CO2 flux in the seasonal ice zone of the Southern Ocean, Biogeosciences, 11, 5749–5761, https://doi.org/10.5194/bg-11-5749-2014, 2014.
Notz, D. and Worster, M. G.: Desalination processes of sea ice revisited, J.
Geophys. Res., 114, C05006, https://doi.org/10.1029/2008JC004885, 2009.
Parsons, T. R., Maita, Y., and Lalli, C. M.: A manual of chemical and
biological methods for seawater analysis, Pergamon Press, New York, https://doi.org/10.1002/iroh.19850700634, 1984.
Petrich, C. and Eicken, H.: Growth, Structure and Properties of Sea Ice,
in: Sea Ice, edited by: Thomas, D. N. and Dieckmann, G. S., Jonn Wiley &
Sons, United Kingdom, 23–79, ISBN: 1405185805, 2010.
Polar Data Catalogue: Study of Sea Ice Biogeochemistry (snow depth, ice thickness, ice salinity, dissolved inorganic carbon, total alkalinity, biomass, under ice currents) Comparing a Thick First Year Ice Site, and a Thinner Polynya Site Near Cambridge Bay, Polar Data Catalogue [data set], https://doi.org/10.5884/13263, 2019.
Provost, C., Sennéchael, N., Miguet, J., Itkin, P., Rösel, A., Koenig, Z., Villacieros-Robineau, N., and Granskog, M. A.: Observations of flooding and
snow-ice formation in a thinner Arctic sea-ice regime during the N-ICE2015
campaign: Influence of basal ice melt and storms, J. Geophys. Res.-Oceans, 122, 7115–7134, https://doi.org/10.1002/2016JC012011, 2017.
Rysgaard, S. and Glud, R. N.: Anaerobic N2 production in Arctic sea
ice, Limnol. Oceanogr., 49, 86–94, 2004.
Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J., and Christensen, P.
B.: Inorganic carbon transport during sea ice growth and decay: A carbon
pump in polar seas, J. Geophys. Res., 112, C03016,
https://doi.org/10.1029/2006JC003572, 2007.
Rysgaard, S., Bendtsen, J., Pedersen, L. T., Ramløv, H., and Glud, R. N.:
Increased CO2 uptake due to sea ice growth and decay in the Nordic
Seas, J. Geophys. Res., 114, C09011, https://doi.org/10.1029/2008JC005088, 2009.
Rysgaard, S., Bendtsen, J., Delille, B., Dieckmann, G. S., Glud, R. N.,
Kennedy, H., Mortensen, J., Papadimitriou, S., Thomas, D. N., and Tison,
J.-L.: Sea ice contribution to the air–sea CO2 exchange in the Arctic
and Southern Oceans, Tellus B, 63, 823–830,
https://doi.org/10.1111/j.1600-0889.2011.00571.x, 2011.
Rysgaard, S., Søgaard, D. H., Cooper, M., Pućko, M., Lennert, K., Papakyriakou, T. N., Wang, F., Geilfus, N. X., Glud, R. N., Ehn, J., McGinnis, D. F., Attard, K., Sievers, J., Deming, J. W., and Barber, D.: Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics, The Cryosphere, 7, 707–718, https://doi.org/10.5194/tc-7-707-2013, 2013.
Savel'yev, B. A.: Study of ice in the region of the drift of the station
SP-4 during melt and breakup in 1955, Problemy Severa, 2, 47–79, 1958.
Savel'yev, B. A.: Structure, composition and properties of the ice cover of
sea and fresh waters, Moscow, Izdatel'stvo Moskovskogo Universiteta, 1963.
Sims, R.: Richard-Sims/Else_2022_Variability_in_sea_ice_carbonate_chemistry: v1.0.0 Publication, v1.0.0-Else-2022, Zenodo [data set], https://doi.org/10.5281/zenodo.7045044, 2022.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03,
https://doi.org/10.1029/2005JC003384, 2008.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Vancoppenolle, M., Fichefet, T., and Bitz, C. M.: Modeling the salinity
profile of undeformed Arctic Sea ice, Geophys. Res. Lett., 33, L21501,
https://doi.org/10.1029/2006GL028342, 2006.
Weeks, W. F.: On Sea Ice,: University of Alaska Press, Fairbanks, 664 pp., ISBN 978-1-60223-079-8, 2010.
Weeks, W. F. and Lee, O. S.: The Salinity Distribution in Young Sea-Ice,
Arctic, 15, 92–108, https://doi.org/10.14430/arctic3562, 1962.
Welch, H. E. and Bergmann, M. A.: Seasonal development of ice algae and its
prediction from environmental factors near Resolute, N.W.T., Canada, Can. J.
Fish. Aquat. Sci., 46, 1793–1804, https://doi.org/10.1139/f89-227, 1989.
Williams W. J., Brown, K. A., Bluhm, B. A., Carmack, E. C., Dalman, L.,
Danielson, S. L., Else, B. G. T., Fredriksen, R., Mundy, C. J., Rotermund,
L. M., and Schimnowski, A.: Stratification in the Canadian Arctic
Archipelago's Kitikmeot Sea: biological and geochemical consequences, Polar
Knowledge, Aqhaliat 2018, Polar Knowledge Canada, 46–52, https://doi.org/10.35298/pkc.2018.06, 2018.
Xu, C., Mikhael, W., Myers, P. G., Else, B., Sims, R. P., and Zhou, Q.:
Effects of seasonal ice coverage on the physical oceanographic conditions of
the Kitikmeot Sea in the Canadian Arctic Archipelago, Atmos.-Ocean, 59, 214–234, https://doi.org/10.1080/07055900.2021.1965531, 2021.
Yasunaka, S., Murata, A., Watanabe, E., Chierici, M., Fransson, A., Heuven,
S. van, Hoppema, M., Ishii, M., and Johannssen, T., Kosugi, N., Lauvset, S.
K., Mathis, J. T., Nishino, S., Omar, A. M., Olsen, A., Sasano, D.,
Takahashi, T., and Wanninkhof, R.: Mapping of the air–sea CO2 flux in
the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal
to interannual variability, Polar Sci., 10, 323–334, https://doi.org/10.1016/j.polar.2016.03.006, 2016.
Short summary
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from two sites to look for differences in carbon chemistry: one site had thin ice due to strong ocean currents and thick snow; the other site had thick ice, thin snow, and weak currents. We did find some differences in small layers near the top and the bottom of the cores, but for most of the ice volume the chemistry was the same. This result will help build better models of the carbon sink in polar oceans.
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from...