Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3669-2022
https://doi.org/10.5194/tc-16-3669-2022
Research article
 | 
13 Sep 2022
Research article |  | 13 Sep 2022

Topology and spatial-pressure-distribution reconstruction of an englacial channel

Laura Piho, Andreas Alexander, and Maarja Kruusmaa

Related authors

Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020,https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Pressure and inertia sensing drifters for glacial hydrology flow path measurements
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020,https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary

Related subject area

Discipline: Glaciers | Subject: Instrumentation
Spatial characterization of near-surface structure and meltwater runoff conditions across Devon Ice Cap from dual-frequency radar reflectivity
Kristian Chan, Cyril Grima, Anja Rutishauser, Duncan A. Young, Riley Culberg, and Donald D. Blankenship
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-181,https://doi.org/10.5194/tc-2022-181, 2022
Revised manuscript accepted for TC
Short summary
Pressure and inertia sensing drifters for glacial hydrology flow path measurements
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020,https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary

Cited articles

Alexander, A., Kruusmaa, M., Tuhtan, J. A., Hodson, A. J., Schuler, T. V., and Kääb, A.: Pressure and inertia sensing drifters for glacial hydrology flow path measurements, The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020, 2020a. a, b, c, d, e, f, g
Alexander, A., Obu, J., Schuler, T. V., Kääb, A., and Christiansen, H. H.: Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard, The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, 2020. a
Alexander, A., Kruusmaa, M., and Piho, L.: Pressure and Inertial sensing drifter data for glacial hydrology flow path, Zenodo [data set], https://doi.org/10.5281/zenodo.4462824, 2021. a
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014. a
Bælum, K. and Benn, D. I.: Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar, The Cryosphere, 5, 139–149, https://doi.org/10.5194/tc-5-139-2011, 2011. a
Download
Short summary
In this study we develop a novel method to map subsurface water flow paths and spatially reference in situ data from such environments. We demonstrate the feasibility of our method with the reconstruction of the flow path of an englacial channel and the water pressures therein. Our method opens up for direct mapping of subsurface water flow paths, not only in glacier hydrology but also in other applications (e.g., karst caves, pipelines, sewer systems).