Agassiz, L.: Études sur les glaciers, Gent & Gassman, Neuchâtel, LCCN (Librairy of congress catalog),
https://lccn.loc.gov/12008544 (last access: 23 June 2022), 1840.
a,
b
Bouillette, E.: Une Superbe Table des Glaciers, L'Astronomie, 47, 201–202, 1933.
a,
b
Bouillette, E.: La fin d'une table des glaciers, L'Astronomie, 48, 89–91, 1934.
a,
b
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 46, 675–688,
https://doi.org/10.3189/172756500781832675, 2000.
a
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297,
https://doi.org/10.3189/172756506781828746, 2006.
a
Bruthans, J., Soukup, J., Vaculikova, J., Filippi, M., Schweigstillova, J., Mayo, A. L., Masin, D., Kletetschka, G., and Rihosek, J.: Sandstone landforms shaped by negative feedback between stress and erosion, Nat. Geosci., 7, 597–601,
https://doi.org/10.1038/ngeo2209, 2014.
a
Bushuk, M., Holland, D. M., Stanton, T. P., Stern, A., and Gray, C.: Ice scallops: a laboratory investigation of the ice–water interface, J. Fluid Mech., 873, 942–976,
https://doi.org/10.1017/jfm.2019.398, 2019.
a
Carenzo, M., Pellicciotti, F., Mabillard, J., Reid, T., and Brock, B. W.: An enhanced temperature index model for debris-covered glaciers accounting for thickness effect, Adv. Water Resour., 94, 457–469,
https://doi.org/10.1016/j.advwatres.2016.05.001, 2016.
a
Cho, W., Kwon, S., and Choi, J.: The thermal conductivity for granite with various water contents, Eng. Geol., 107, 167–171,
https://doi.org/10.1016/j.enggeo.2009.05.012, 2009.
a
Claudin, P., Jarry, H., Vignoles, G., Plapp, M., and Andreotti, B.: Physical processes causing the formation of penitentes, Phys. Rev. E, 92, 033015,
https://doi.org/10.1103/physreve.92.033015, 2015.
a
Claudin, P., Durán, O., and Andreotti, B.: Dissolution instability and roughening transition, J. Fluid Mech., 832, R2,
https://doi.org/10.1017/jfm.2017.711, 2017.
a
Cohen, C., Berhanu, M., Derr, J., and du Pont, S. C.: Erosion patterns on dissolving and melting bodies, Physical Review Fluids, 1, 050508,
https://doi.org/10.1103/PhysRevFluids.1.050508, 2016.
a
Cohen, C., Berhanu, M., Derr, J., and Du Pont, S. C.: Buoyancy-driven dissolution of inclined blocks: Erosion rate and pattern formation, Physical Review Fluids, 5, 053802,
https://doi.org/10.1103/PhysRevFluids.5.053802, 2020.
a
Collier, E., Nicholson, L. I., Brock, B. W., Maussion, F., Essery, R., and Bush, A. B. G.: Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach, The Cryosphere, 8, 1429–1444,
https://doi.org/10.5194/tc-8-1429-2014, 2014.
a
Conway, J. and Cullen, N.: Constraining turbulent heat flux parameterization over a temperate maritime glacier in New Zealand, Ann. Glaciol., 54, 41–51,
https://doi.org/10.3189/2013AoG63A604, 2013.
a,
b,
c
Evatt, G., Mayer, C., Mallinson, A., Abrahams, I., Heil, M., and Nicholson, L.: The secret life of ice sails, J. Glaciol., 63, 1049–1062,
https://doi.org/10.1017/jog.2017.72, 2017.
a
Evatt, G. W., Abrahams, I. D., Heil, M., Mayer, C., Kingslake, J., Mitchell, S. L., Fowler, A. C., and Clark, C. D.: Glacial melt under a porous debris layer, J. Glaciol., 61, 825–836,
https://doi.org/10.3189/2015JoG14J235, 2015.
a
Fitzpatrick, N., Radić, V., and Menounos, B.: Surface Energy Balance Closure and Turbulent Flux Parameterization on a Mid-Latitude Mountain Glacier, Purcell Mountains, Canada, Front. Earth Sci., 5, 67,
https://doi.org/10.3389/feart.2017.00067, 2017.
a
Guérin, A., Derr, J., Du Pont, S. C., and Berhanu, M.: Streamwise dissolution patterns created by a flowing water film, Phys. Rev. Lett., 125, 194502,
https://doi.org/10.1103/PhysRevLett.125.194502, 2020.
a
Hardy, B.: ITS-90 Formulations for Vapor Pressure, Frost point
Temperature, Dew point Temperature, and Enhancement Factors in the
range
−100 to
+100 C”, Papers and Abstracts of the Third International Symposium on Humidity and Moisture, Teddington, London, England, April 1998,
https://api.semanticscholar.org/CorpusID:98492826 (last access: 23 June 2022), 214–222, 1998. a
Hénot, M., Plihon, N., and Taberlet, N.: Onset of Glacier Tables, Phys. Rev. Lett., 127, 108501,
https://doi.org/10.1103/PhysRevLett.127.108501, 2021.
a,
b,
c,
d,
e,
f,
g
Huang, J. M., Tong, J., Shelley, M., and Ristroph, L.: Ultra-sharp pinnacles sculpted by natural convective dissolution, P. Natl. Acad. Sci. USA, 117, 23339–23344,
https://doi.org/10.1073/pnas.2001524117, 2020.
a
Huinink, H. P., Pel, L., and Kopinga, K.: Simulating the growth of tafoni, Earth Surf. Proc. Land., 29, 1225–1233,
https://doi.org/10.1002/esp.1087, 2004.
a
Lienhard, J. H.: A Heat Transfert Textbook, Phlogiston Press, 411–428, ISBN 9780486837352, 2019. a
Mashaal, N. M., Sallam, E. S., and Khater, T. M.: Mushroom rock, inselberg, and butte desert landforms (Gebel Qatrani, Egypt): evidence of wind erosion, Int. J. Earth Sci., 109, 1975–1976,
https://doi.org/10.1007/s00531-020-01883-z, 2020.
a
Michalski, J., Reynolds, S., Sharp, T., and Christensen, P.: Thermal infrared analysis of weathered granitic rock compositions in the Sacaton Mountains, Arizona: Implications for petrologic classifications from thermal infrared remote-sensing data, J. Geophys. Res.-Planet., 109, E03007,
https://doi.org/10.1029/2003JE002197, 2004.
a
Moeller, R., Moeller, M., Kukla, P. A., and Schneider, C.: Impact of supraglacial deposits of tephra from Grímsvötn volcano, Iceland, on glacier ablation, J. Glaciol., 62, 933–943,
https://doi.org/10.1017/jog.2016.82, 2016.
a
Nadeau, D. F., Brutsaert, W., Parlange, M., Bou-Zeid, E., Barrenetxea, G., Couach, O., Boldi, M.-O., Selker, J. S., and Vetterli, M.: Estimation of urban sensible heat flux using a dense wireless network of observations, Environ. Fluid Mech., 9, 635–653,
https://doi.org/10.1007/s10652-009-9150-7, 2009.
a
Östrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges, Geogr. Ann., 41, 228–230,
http://www.jstor.org/stable/4626805, 1959. a
Rhodes, J. J., Armstrong, R. L., and Warren, S. G.: Mode of Formation of “Ablation Hollows” Controlled by Dirt Content of Snow, J. Glaciol., 33, 135–139,
https://doi.org/10.3189/S0022143000008601, 1987.
a
Vernay, M., Lafaysse, M., Monteiro, D., Hagenmuller, P., Nheili, R., Samacoïts, R., Verfaillie, D., and Morin, S.: The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021), Earth Syst. Sci. Data, 14, 1707–1733,
https://doi.org/10.5194/essd-14-1707-2022, 2022a.
a
Vernay, M., Lafaysse, M., Hagenmuller, P., Nheili, R., Verfaillie, D., and Morin, S.: The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958–present), AERIS [data set],
https://doi.org/10.25326/37#v2020.2, 2022b.
a
Weady, S., Tong, J., Zidovska, A., and Ristroph, L.: Anomalous Convective Flows Carve Pinnacles and Scallops in Melting Ice, Phys. Rev. Lett., 128, 044502,
https://doi.org/10.1103/PhysRevLett.128.044502, 2022.
a
Young, R. and Young, A.: Sandstone Landforms, Lecture Notes in Physics, Springer-Verlag, ISBN 9780387539461,
https://books.google.fr/books?id=Da8rvwEACAAJ (last access: 1 June 2022), 1992. a