Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2127-2022
https://doi.org/10.5194/tc-16-2127-2022
Research article
 | 
07 Jun 2022
Research article |  | 07 Jun 2022

First evidence of microplastics in Antarctic snow

Alex R. Aves, Laura E. Revell, Sally Gaw, Helena Ruffell, Alex Schuddeboom, Ngaire E. Wotherspoon, Michelle LaRue, and Adrian J. McDonald

Related authors

Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
GEO4PALM v1.1: an open-source geospatial data processing toolkit for the PALM model system
Dongqi Lin, Jiawei Zhang, Basit Khan, Marwan Katurji, and Laura E. Revell
Geosci. Model Dev., 17, 815–845, https://doi.org/10.5194/gmd-17-815-2024,https://doi.org/10.5194/gmd-17-815-2024, 2024
Short summary
The sensitivity of Southern Ocean atmospheric dimethyl sulfide (DMS) to modeled oceanic DMS concentrations and emissions
Yusuf A. Bhatti, Laura E. Revell, Alex J. Schuddeboom, Adrian J. McDonald, Alex T. Archibald, Jonny Williams, Abhijith U. Venugopal, Catherine Hardacre, and Erik Behrens
Atmos. Chem. Phys., 23, 15181–15196, https://doi.org/10.5194/acp-23-15181-2023,https://doi.org/10.5194/acp-23-15181-2023, 2023
Short summary
Development, intercomparison, and evaluation of an improved mechanism for the oxidation of dimethyl sulfide in the UKCA model
Ben A. Cala, Scott Archer-Nicholls, James Weber, N. Luke Abraham, Paul T. Griffiths, Lorrie Jacob, Y. Matthew Shin, Laura E. Revell, Matthew Woodhouse, and Alexander T. Archibald
Atmos. Chem. Phys., 23, 14735–14760, https://doi.org/10.5194/acp-23-14735-2023,https://doi.org/10.5194/acp-23-14735-2023, 2023
Short summary
Assessing the cloud radiative bias at Macquarie Island in the ACCESS-AM2 model
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023,https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary

Related subject area

Discipline: Other | Subject: Antarctic
Using Deep Learning and Multi-source Remote Sensing Images to Map Landlocked Lakes in Antarctica
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1810,https://doi.org/10.5194/egusphere-2023-1810, 2023
Short summary
Retention time of lakes in the Larsemann Hills oasis, East Antarctica
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021,https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
A pilot study about microplastics and mesoplastics in an Antarctic glacier
Miguel González-Pleiter, Gissell Lacerot, Carlos Edo, Juan Pablo Lozoya, Francisco Leganés, Francisca Fernández-Piñas, Roberto Rosal, and Franco Teixeira-de-Mello
The Cryosphere, 15, 2531–2539, https://doi.org/10.5194/tc-15-2531-2021,https://doi.org/10.5194/tc-15-2531-2021, 2021
Short summary
Solar radiative transfer in Antarctic blue ice: spectral considerations, subsurface enhancement, inclusions, and meteorites
Andrew R. D. Smedley, Geoffrey W. Evatt, Amy Mallinson, and Eleanor Harvey
The Cryosphere, 14, 789–809, https://doi.org/10.5194/tc-14-789-2020,https://doi.org/10.5194/tc-14-789-2020, 2020
Antarctic ice shelf thickness change from multimission lidar mapping
Tyler C. Sutterley, Thorsten Markus, Thomas A. Neumann, Michiel van den Broeke, J. Melchior van Wessem, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 1801–1817, https://doi.org/10.5194/tc-13-1801-2019,https://doi.org/10.5194/tc-13-1801-2019, 2019
Short summary

Cited articles

Absher, T. M., Ferreira, S. L., Kern, Y., Ferreira, A. L., Christo, S. W., and Ando, R. A.: Incidence and identification of microfibers in ocean waters in Admiralty Bay, Antarctica, Environ. Sci. Pollut. Res., 26, 292–298, 2019. a
Acharya, S., Rumi, S. S., Hu, Y., and Abidi, N.: Microfibers from synthetic textiles as a major source of microplastics in the environment: A review, Text. Res. J., 91, 2136–2156, 2021. a
Allen, S., Allen, D., Phoenix, V. R., Roux, G. L., Jiménez, P. D., Simonneau, A., Binet, S., and Galop, D.: Atmospheric transport and deposition of microplastics in a remote mountain catchment, Nat. Geosci., 12, 339–344, https://doi.org/10.1038/s41561-019-0335-5, 2019. a, b, c
Allen, S., Allen, D., Moss, K., Le Roux, G., Phoenix, V. R., and Sonke, J. E.: Examination of the ocean as a source for atmospheric microplastics, PloS one, 15, e0232746, https://doi.org/10.1371/journal.pone.02327, 2020. a, b
Ambrosini, R., Azzoni, R. S., Pittino, F., Diolaiuti, G., Franzetti, A., and Parolini, M.: First evidence of microplastic contamination in the supraglacial debris of an alpine glacier, Environ. Pollut., 253, 297–301, 2019. a, b
Download
Short summary
This study confirms the presence of microplastics in Antarctic snow, highlighting the extent of plastic pollution globally. Fresh snow was collected from Ross Island, Antarctica, and subsequent analysis identified an average of 29 microplastic particles per litre of melted snow. The most likely source of these airborne microplastics is local scientific research stations; however, modelling shows their origin could have been up to 6000 km away.