Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-2103-2022
https://doi.org/10.5194/tc-16-2103-2022
Research article
 | 
01 Jun 2022
Research article |  | 01 Jun 2022

Estimating a mean transport velocity in the marginal ice zone using ice–ocean prediction systems

Graig Sutherland, Victor de Aguiar, Lars-Robert Hole, Jean Rabault, Mohammed Dabboor, and Øyvind Breivik

Related authors

ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023,https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
Ocean wave tracing v.1: A numerical solver of the wave ray equations for ocean waves on variable currents at arbitrary depths.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-19,https://doi.org/10.5194/gmd-2023-19, 2023
Preprint under review for GMD
Short summary
Revisiting the DeepWater Horizon spill: High resolution model simulations of effects of oil droplet size distribution and river fronts
Lars R. Hole, Knut-Frode Dagestad, Johannes Röhrs, Cecilie Wettre, Vassiliki H. Kourafalou, Ioannis Androulidakis, Matthieu Le Hénaff, Heesook Kang, and Oscar Garcia-Pineda
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-130,https://doi.org/10.5194/os-2018-130, 2018
Revised manuscript not accepted
Short summary
OpenDrift v1.0: a generic framework for trajectory modelling
Knut-Frode Dagestad, Johannes Röhrs, Øyvind Breivik, and Bjørn Ådlandsvik
Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018,https://doi.org/10.5194/gmd-11-1405-2018, 2018
Short summary
The “shallow-waterness” of the wave climate in European coastal regions
Kai Håkon Christensen, Ana Carrasco, Jean-Raymond Bidlot, and Øyvind Breivik
Ocean Sci., 13, 589–597, https://doi.org/10.5194/os-13-589-2017,https://doi.org/10.5194/os-13-589-2017, 2017
Short summary

Related subject area

Discipline: Sea ice | Subject: Atmospheric Interactions
Decadal changes in the leading patterns of sea level pressure in the Arctic and their impacts on the sea ice variability in boreal summer
Nakbin Choi, Kyu-Myong Kim, Young-Kwon Lim, and Myong-In Lee
The Cryosphere, 13, 3007–3021, https://doi.org/10.5194/tc-13-3007-2019,https://doi.org/10.5194/tc-13-3007-2019, 2019
Short summary
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439, https://doi.org/10.5194/tc-13-1423-2019,https://doi.org/10.5194/tc-13-1423-2019, 2019
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Atmospheric influences on the anomalous 2016 Antarctic sea ice decay
Elisabeth Schlosser, F. Alexander Haumann, and Marilyn N. Raphael
The Cryosphere, 12, 1103–1119, https://doi.org/10.5194/tc-12-1103-2018,https://doi.org/10.5194/tc-12-1103-2018, 2018
Short summary

Cited articles

Babaei, H. and Watson, D.: A preliminary computational surface oil spill trajectory model for ice-covered waters and its validation with two oil spill events: A field experiment in the Barents Sea and an accidental spill in the Gulf of Finland, Mar. Pollut. Bull., 161, 111786, https://doi.org/10.1016/j.marpolbul.2020.111786, 2020. a
Breivik, Ø. and Christensen, K. H.: A combined Stokes drift profile under swell and wind sea, J. Phys. Oceanogr., 50, 2819–2833, 2020. a
Breivik, Ø., Allen, A. A., Maisondieu, C., and Roth, J. C.: Wind-induced drift of objects at sea: The leeway method, Appl. Ocean Res., 33, 100–109, 2011. a, b, c
Christensen, K. H., Breivik, Ø., Dagestad, K.-F., Röhrs, J., and Ward, B.: Short-Term Predictions of oceanic drift, Oceanography, 31, 59–67, 2018. a
CMEMS: Arctic Ocean Physics Analysis and Forecast (ARCTIC_ANALYSIS_FORECAST_PHYS_002_001_a), CMEMS [data set], https://doi.org/10.48670/moi-00001, last access: May 2022, updated daily. a
Download
Short summary
The marginal ice zone (MIZ), which is the transition region between the open ocean and the dense pack ice, is a very dynamic region comprising a mixture of ice and ocean conditions. Using novel drifters deployed in various ice conditions in the MIZ, several material transport models are tested with two operational ice–ocean prediction systems. A new general transport equation, which uses both the ice and ocean solutions, is developed that reduces the error in drift prediction for our case study.