Articles | Volume 15, issue 2
The Cryosphere, 15, 951–982, 2021
The Cryosphere, 15, 951–982, 2021

Research article 24 Feb 2021

Research article | 24 Feb 2021

An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models

Ann Keen et al.

Related authors

Investigating future changes in the volume budget of the Arctic sea ice in a coupled climate model
Ann Keen and Ed Blockley
The Cryosphere, 12, 2855–2868,,, 2018
Short summary
The sea ice model component of HadGEM3-GC3.1
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723,,, 2018
Short summary
Brief Communication: Does it matter exactly when the Arctic will become ice-free?
J. K. Ridley, R. A. Wood, A. B. Keen, E. Blockley, and J. A. Lowe
The Cryosphere Discuss.,,, 2016
Revised manuscript has not been submitted
Short summary
Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model
J. G. L. Rae, H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters
Geosci. Model Dev., 8, 2221–2230,,, 2015
Short summary
Mechanisms causing reduced Arctic sea ice loss in a coupled climate model
A. E. West, A. B. Keen, and H. T. Hewitt
The Cryosphere, 7, 555–567,,, 2013

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Meltwater sources and sinks for multiyear Arctic sea ice in summer
Don Perovich, Madison Smith, Bonnie Light, and Melinda Webster
The Cryosphere, 15, 4517–4525,,, 2021
Short summary
An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072,,, 2021
Short summary
Calibration of sea ice drift forecasts using random forest algorithms
Cyril Palerme and Malte Müller
The Cryosphere, 15, 3989–4004,,, 2021
Short summary
Multiscale variations in Arctic sea ice motion and links to atmospheric and oceanic conditions
Dongyang Fu, Bei Liu, Yali Qi, Guo Yu, Haoen Huang, and Lilian Qu
The Cryosphere, 15, 3797–3811,,, 2021
Short summary
The flexural strength of bonded ice
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967,,, 2021
Short summary

Cited articles

Bailey, D. A., Holland, M. M., DuVivier, A. K., Hunke, E. C., and Turner, A. K.: Impact of a New Sea Ice Thermodynamic Formulation in the CESM2 sea ice component, J. Adv. Model. Earth Sy., 12, e2020MS002154,, 2020 
Bathiany, S., van der Bolt, B., Williamson, M. S., Lenton, T. M., Scheffer, M., van Nes, E. H., and Notz, D.: Statistical indicators of Arctic sea-ice stability – prospects and limitations, The Cryosphere, 10, 1631–1645,, 2016. 
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720,, 2013. 
Bentsen, M., Ilicak, M., Nummelin, A., Guo, C., and Debernard, J. B.: Bergen Layered Ocean Model (BLOM): Description and evaluation of global ocean-sea-ice experiments, Geosci. Model Dev. Discuss., in preparation, 2021. 
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.