Articles | Volume 15, issue 2
https://doi.org/10.5194/tc-15-897-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-897-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The cooling signature of basal crevasses in a hard-bedded region of the Greenland Ice Sheet
Ian E. McDowell
CORRESPONDING AUTHOR
Department of Geology and Geophysics, University of Wyoming, Laramie,
Wyoming, 82071, USA
Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Nevada, 89557, USA
Neil F. Humphrey
Department of Geology and Geophysics, University of Wyoming, Laramie,
Wyoming, 82071, USA
Joel T. Harper
Department of Geosciences, University of Montana, Missoula, Montana,
59812, USA
Toby W. Meierbachtol
Department of Geosciences, University of Montana, Missoula, Montana,
59812, USA
Related authors
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Kirsten Gehl, Joel Harper, and Neil Humphrey
EGUsphere, https://doi.org/10.5194/egusphere-2025-3002, https://doi.org/10.5194/egusphere-2025-3002, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The geometric form of snow grains governs snow compaction and the movement of air and water within the snow. We observed unexpectedly thick and deep layers of faceted snow grains in cores drilled along the flanks of the Greenland Ice Sheet. Based on field measurements and modeling, we find that meltwater infiltration and refreezing in the cold snow generates these grains. As more of the ice sheet is affected by melting, subsurface faceting of snow crystals may become increasingly important.
Alamgir Hossan, Andreas Colliander, Nicole-Jeanne Schlegel, Joel Harper, Lauren Andrews, Jana Kolassa, Julie Z. Miller, and Richard Cullather
EGUsphere, https://doi.org/10.5194/egusphere-2025-2681, https://doi.org/10.5194/egusphere-2025-2681, 2025
Short summary
Short summary
Microwave L-band radiometry offers a promising tool for estimating the total surface-to-subsurface liquid water amount (LWA) in the snow and firn in polar ice sheets. An accurate modelling of wet snow effective permittivity is a key to this. Here, we evaluated the performance of ten commonly used microwave dielectric mixing models for estimating LWA in the percolation zone of the Greenland Ice Sheet to help an appropriate choice of dielectric mixing model for LWA retrieval algorithms.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Joel Harper, Toby Meierbachtol, Neil Humphrey, Jun Saito, and Aidan Stansberry
The Cryosphere, 15, 5409–5421, https://doi.org/10.5194/tc-15-5409-2021, https://doi.org/10.5194/tc-15-5409-2021, 2021
Short summary
Short summary
We use surface and borehole measurements to investigate the generation and fate of basal meltwater in the ablation zone of western Greenland. The rate of basal meltwater generation at borehole study sites increases by up to 20 % over the winter period. Accommodation of all basal meltwater by expansion of isolated subglacial cavities is implausible. Other sinks for water do not likely balance basal meltwater generation, implying water evacuation through a connected drainage system in winter.
Cited articles
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M.
P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of
evolving subglacial drainage beneath the Greenland Ice Sheet, Nature,
514, 80–83, https://doi.org/10.1038/nature13796, 2014.
Brown, J., Harper, J., and Humphrey, N.: Liquid water content in ice estimated through a full-depth ground radar profile and borehole measurements in western Greenland, The Cryosphere, 11, 669–679, https://doi.org/10.5194/tc-11-669-2017, 2017.
Carslaw, H. S. and Jaeger, J. C.: Conduction of Heat in Solids, 2nd edition,
Clarendon Press, Oxford, England, 1959.
Catania, G. A. and Neumann, T. A.: Persistent englacial drainage features in
the Greenland Ice Sheet, Geophys. Res. Lett., 37, L02501, https://doi.org/10.1029/2009GL041108, 2010.
Catania, G. A., Conway, H., Raymond, C. F., and Scambos, T. A.: Surface
morphology and internal layer stratigraphy in the downstream end of Kamb Ice
Stream, West Antarctica, J. Glaciol., 51, 423–431,
https://doi.org/10.3189/172756505781829142, 2005.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Academic
Press, Burlington, Massachusetts, USA, 2010.
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J.,
Hansen, A. W., and Balling, N.: Past Temperatures Directly from the Greenland
Ice Sheet, Science, 282, 268–271, https://doi.org/10.1126/science.282.5387.268, 1998.
Doyle, S. H., Hubbard, B., Christoffersen, P., Young, T. J., Hofstede, C.,
Bougamont, M., Box, J. E., and Hubbard, A.: Physical conditions of fast
glacier flow: 1. measurements from boreholes drilled to the bed of Store
Glacier, West Greenland, J. Geophys. Res.-Earth, 123, 324–348,
https://doi.org/10.1002/2017JF004529, 2018.
Funk, M., Echelmeyer, K., and Iken, A.: Mechanisms of fast flow in Jakobshavns Isbræ, West Greenland: Part II. Modeling of englacial temperatures, J. Glaciol., 40, 569–585, https://doi.org/10.3189/S0022143000012466, 1994.
Harper, J. T., Bradford, J. H., Humphrey, N. F., and Meierbachtol, T. W.:
Vertical extension of the subglacial drainage system into basal crevasses,
Nature, 467, 579–582, https://doi.org/10.1038/nature09398, 2010.
Harper, J. T., Humphrey, N. F., Meierbachtol, T. W., Graly, J. A., and
Fischer, U. H.: Borehole measurements indicate hard bed conditions,
Kangerlussuaq sector, western Greenland Ice Sheet, J. Geophys. Res.-Earth,
122, 1605–1618, https://doi.org/10.1002/2017JF004201, 2017.
Harrington, J. A., Humphrey, N. F., and Harper, J. T.: Temperature
distribution and thermal anomalies along a flowline of the Greenland ice
sheet, Ann. Glaciol., 56, 98–104, https://doi.org/10.3189/2015AoG70A945, 2015.
Hills, B. H., Harper, J. T., Humphrey, N. F., and Meierbachtol, T. W.:
Measured horizontal temperature gradients constrain heat transfer mechanisms
in Greenland ice, Geophys. Res. Lett., 44, 9778–9785, https://doi.org/10.1002/2017GL074917, 2017.
Hills, B. H., Harper, J. T., Meierbachtol, T. W., Johnson, J. V., Humphrey, N. F., and Wright, P. J.: Processes influencing heat transfer in the near-surface ice of Greenland's ablation zone, The Cryosphere, 12, 3215–3227, https://doi.org/10.5194/tc-12-3215-2018, 2018.
Holmund, P.: Internal geometry and evolution of moulins, Storglaciaren,
Sweden, J. Glaciol., 34, 242–248, https://doi.org/10.3189/S0022143000032305,
1988.
Hooke, R. L.: Flow law for polycrystalline ice in glaciers: comparison of
theoretical predictions, laboratory data, and field measurements, Rev.
Geophys. Space. Ge., 19, 664–672, https://doi.org/10.1029/RG019i004p00664, 1981.
Humphrey, N. and Echelmeyer, K.: Hot-water drilling and bore-hole closure in
cold ice, J. Glaciol., 36, 287–298, https://doi.org/10.3189/002214390793701354, 1990.
Huzurbazar, S. and Humphrey, N. F.: Functional clustering of time series: An
insight into length scales in subglacial water flow, Water Resour. Res.,
44, W11420, https://doi.org/10.1029/2007WR006612, 2008.
Iken, A., Echelmeyer, K., Harrison, W., and Funk, M.: Mechanisms of fast flow
in Jakobshavns Isbrae, West Greenland: Part I. Measurements of temperature
and water level in deep boreholes, J. Glaciol., 39, 15–25,
https://doi.org/10.3189/S0022143000015689, 1993.
Jarvis, G. T. and Clarke, G. K. C.: Thermal effects of crevassing on Steele
Glacier, Yukon Territory, Canada, J. Glaciol., 13, 243–254, https://doi.org/10.3189/S0022143000023054, 1974.
Jezek, K. C. and Bentley, C. R.: Field Studies of Bottom Crevasses in the
Ross Ice Shelf, Antarctica, J. Glaciol., 29, 118–126,
https://doi.org/10.3189/S0022143000005189, 1983.
Luckman, A., Jansen, D., Kulessa, B., King, E. C., Sammonds, P., and Benn, D. I.: Basal crevasses in Larsen C Ice Shelf and implications for their global abundance, The Cryosphere, 6, 113–123, https://doi.org/10.5194/tc-6-113-2012, 2012.
Lüthi, M., Funk, M., Iken, A., Gogineni, S., and Truffer, M.: Mechanisms
of fast flow in Jakobshavn Isbrae, West Greenland: Part III. Measurements of
ice deformation, temperature and cross-borehole conductivity in boreholes to
the bedrock, J. Glaciol., 48, 369–385, https://doi.org/10.3189/172756502781831322, 2002.
Lüthi, M. P., Ryser, C., Andrews, L. C., Catania, G. A., Funk, M., Hawley, R. L., Hoffman, M. J., and Neumann, T. A.: Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming, The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015, 2015.
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Aschwanden, A., Clow,
G. D., Colgan, W. T., Gogineni, S. P., Morlighem, M., Nowicki, S. M. J.,
Paden, J. D., Price, S. F., and Seroussi, H.: A synthesis of the basal
thermal state of the Greenland Ice Sheet, J. Geophys. Res.-Earth, 121,
1328–1350, https://doi.org/10.1002/2015JF003803, 2016.
Maier, N., Humphrey, N., Harper, J., and Meierbachtol, T.: Sliding dominates
slow-flowing margin regions, Greenland Ice Sheet, Sci. Adv., 5, eaaw5406,
https://doi.org/10.1126/sciadv.aaw5406, 2019.
McDowell, I., Humphrey, N., Harper, J., and Meierbachtol T.: Full-depth ice
temperature measurements from southwestern Greenland's ablation zone,
2015–2017, Mountain Scholar Dataset, https://doi.org/10.15786/20.500.11919/7147,
2020.
McGrath, D., Steffen, K., Scambos, T., Rajaram, H., Casassa, G., and Lagos,
J. L. R.: Basal crevasses and associated surface crevassing on the Larsen C
ice shelf, Antarctica, and their role in ice-shelf instability, Ann.
Glaciol., 53, 10–18, https://doi.org/10.3189/2012AoG60A005, 2012.
Meierbachtol, T., Harper, J., and Humphrey, N.: Basal drainage system
response to increasing surface melt on the Greenland Ice Sheet, Science,
341, 777–779, https://doi.org/10.1126/science.1235905, 2013.
Meierbachtol, T., Harper, J., and Johnson, J.: Force balance along Isunnguata
Sermia, West Greenland, Front. Earth Sci., 4, 87, https://doi.org/10.3389/feart.2016.00087, 2016.
Moore, P. L., Winberry, J. P., Iverson, N. R., Christianson, K. A.,
Anandakrishnan, S., Jackson, M., Mathison, M. E., and Cohen, D.: Glacier slip
and seismicity induced by surface melt, Geology, 41, 1247–1250,
https://doi.org/10.1130/G34760.1, 2013.
Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F., and Hale, R.:
IceBridge MCoRDS L1B Geolocated Radar Echo Strength Profiles, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/90S1XZRBAX5N, 2014.
Phillips, T., Rajaram, H., Colgan, W., Steffen, K., and Abdalati, W.: Evaluation of cryo-hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland, J. Geophys. Res.-Earth Surf., 118, 1241–1256, https://doi.org/10.1002/jgrf.20079, 2013.
Poinar, K., Joughin, I., Lenaerts, J. T. M., and Van Den Broeke, M. R.:
Englacial latent-heat transfer has limited influence on seaward ice flux in
western Greenland, J. Glaciol., 63, 1–16, https://doi.org/10.1017/jog.2016.103, 2017.
Ryser, C., Lüthi, M. P., Andrews, L. C., Catania, G. A., Funk, M.,
Hawley, R., Hoffman, M., and Neumann, T. A.: Caterpillar-like ice motion in
the ablation zone of the Greenland ice sheet, J. Geophys. Res.-Earth,
119, 2258–2271, https://doi.org/10.1002/2013JF003067, 2014.
Ryser, C., Lüthi, M. P., Andrews, L. C., Hoffman, M. J., Catania, G. A.,
Hawley, R. L., Neumann, T. A., and Kristensen, S. S.: Sustained high basal
motion of the Greenland ice sheet revealed by borehole deformation, J. Glaciol., 60, 647–660, https://doi.org/10.3189/2014JoG13J196,
2014.
Seguinot, J., Funk, M., Bauder, A., Wyder, T., Senn, C., and Sugiyama, S.:
Englacial warming indicates deep crevassing in Bowdoin Glacier, Greenland,
Front. Earth Sci., 8, 65, https://doi.org/10.3389/feart.2020.00065, 2020.
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H.,
Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T.,
Moustafa, S. E., Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D.
C., Sheng, Y., and Balog, J.: Efficient meltwater drainage through
supraglacial streams and rivers on the southwest Greenland ice sheet, P. Natl.
Acad. Sci. USA, 112, 1001–1006, https://doi.org/10.1073/pnas.1413024112,
2015.
Thomsen, H. H., Olesen, O., Braithwaite, R. J., and Boggild, C.: Ice
drilling and mass balance at Pakitsoq, Jakobshavn, central West Greenland,
Report 152, Grønlands Geologiske Undersøgelse, Copenhagen, Denmark,
80–84,
1991.
van der Veen, C. J.: Fracture mechanics approach to penetration of bottom
crevasses on glaciers, Cold Reg. Sci. Technol., 27, 213–223,
https://doi.org/10.1016/S0165-232X(98)00006-8, 1998.
van de Wal, R. S. W., Smeets, C. J. P. P., Boot, W., Stoffelen, M., van Kampen, R., Doyle, S. H., Wilhelms, F., van den Broeke, M. R., Reijmer, C. H., Oerlemans, J., and Hubbard, A.: Self-regulation of ice flow varies across the ablation area in south-west Greenland, The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015, 2015.
Weertman, J.: On the sliding of glaciers, J. Glaciol., 3, 33–38,
https://doi.org/10.3189/S0022143000024709, 1957.
Weertman, J.: Bottom crevasses, J. Glaciol., 25, 185–188,
https://doi.org/10.3189/S0022143000010418, 1980.
Wright, P. J., Harper, J. T., Humphrey, N. F., and Meierbachtol, T. W.:
Measured basal water pressure variability of the western Greenland Ice
Sheet: Implications for hydraulic potential, J. Geophys. Res.-Earth, 121,
1134–1147, https://doi.org/10.1002/2016JF003819, 2016.
Short summary
Ice temperature controls rates of internal deformation and the onset of basal sliding. To identify heat transfer mechanisms and englacial heat sources within Greenland's ablation zone, we examine a 2–3-year continuous temperature record from nine full-depth boreholes. Thermal decay after basal crevasses release heat in the near-basal ice likely produces the observed cooling. Basal crevasses in Greenland can affect the basal ice rheology and indicate a potentially complex basal hydrologic system.
Ice temperature controls rates of internal deformation and the onset of basal sliding. To...