Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5765-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5765-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence of elevation-dependent warming from the Chinese Tian Shan
Institute of Geography, Fujian Normal University, Fuzhou 350007, China
Fujian Provincial Engineering Research Center for Monitoring and
Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350007, China
College of Geographical Sciences, Fujian Normal University, Fuzhou
350007, China
State Key Laboratory of Subtropical Mountain Ecology (Funded by the
Ministry of Science and Technology and the Fujian province), Fujian Normal University, Fuzhou 350007, China
Haijun Deng
Institute of Geography, Fujian Normal University, Fuzhou 350007, China
Fujian Provincial Engineering Research Center for Monitoring and
Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350007, China
College of Geographical Sciences, Fujian Normal University, Fuzhou
350007, China
State Key Laboratory of Subtropical Mountain Ecology (Funded by the
Ministry of Science and Technology and the Fujian province), Fujian Normal University, Fuzhou 350007, China
Xiangyong Lei
College of Geographical Sciences, Fujian Normal University, Fuzhou
350007, China
Jianhui Wei
Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe
Institute of Technology, Campus Alpine, Garmisch-Partenkirchen 82467, Germany
Yaning Chen
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Zhongqin Li
State Key Laboratory of Cryospheric Sciences/Tianshan Glaciological
Station, Northwest Institute of Eco-Environment and Resources, Chinese
Academy of Sciences, Lanzhou 730000, China
Miaomiao Ma
China Institute of Water Resources and Hydropower Research, Beijing
100038, China
Xingwei Chen
Institute of Geography, Fujian Normal University, Fuzhou 350007, China
Fujian Provincial Engineering Research Center for Monitoring and
Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350007, China
College of Geographical Sciences, Fujian Normal University, Fuzhou
350007, China
State Key Laboratory of Subtropical Mountain Ecology (Funded by the
Ministry of Science and Technology and the Fujian province), Fujian Normal University, Fuzhou 350007, China
Ying Chen
Institute of Geography, Fujian Normal University, Fuzhou 350007, China
Fujian Provincial Engineering Research Center for Monitoring and
Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350007, China
College of Geographical Sciences, Fujian Normal University, Fuzhou
350007, China
State Key Laboratory of Subtropical Mountain Ecology (Funded by the
Ministry of Science and Technology and the Fujian province), Fujian Normal University, Fuzhou 350007, China
Meibing Liu
Institute of Geography, Fujian Normal University, Fuzhou 350007, China
Fujian Provincial Engineering Research Center for Monitoring and
Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350007, China
College of Geographical Sciences, Fujian Normal University, Fuzhou
350007, China
State Key Laboratory of Subtropical Mountain Ecology (Funded by the
Ministry of Science and Technology and the Fujian province), Fujian Normal University, Fuzhou 350007, China
Jianyun Gao
Fujian Key Laboratory of Severe Weather, Fuzhou 350001, China
Related authors
Lu Gao, Jianhui Wei, Lingxiao Wang, Matthias Bernhardt, Karsten Schulz, and Xingwei Chen
Earth Syst. Sci. Data, 10, 2097–2114, https://doi.org/10.5194/essd-10-2097-2018, https://doi.org/10.5194/essd-10-2097-2018, 2018
Short summary
Short summary
High-resolution temperature data sets are important for the Chinese Tian Shan, which has a complex ecological environment system. This study presents a unique high-resolution (1 km, 6-hourly) air temperature data set for this area from 1979 to 2016 based on a robust statistical downscaling framework. The strongest advantage of this method is its independence of local meteorological stations due to a model internal, vertical lapse rate scheme. This method was validated for other mountains.
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-212, https://doi.org/10.5194/hess-2024-212, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Hydrometeorological forecasting is crucial for managing water resources and mitigating extreme weather impacts, yet current long-term forecast products are often embedded with uncertainties. We develop a deep learning based modelling framework to improve 30-day rainfall and streamflow forecasts by combining advanced neural networks and outputs from physical models. With the forecast error reduced by up to 32%, the framework has the potential to enhance water management and disaster preparedness.
Patrick Olschewski, Qi Sun, Jianhui Wei, Yu Li, Zhan Tian, Laixiang Sun, Joël Arnault, Tanja C. Schober, Brian Böker, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-95, https://doi.org/10.5194/hess-2024-95, 2024
Preprint under review for HESS
Short summary
Short summary
There are indications that typhoon intensities may increase under global warming. However, further research on these projections and their uncertainties is necessary. We study changes in typhoon intensity under SSP5-8.5 for seven events affecting the Pearl River Delta using Pseudo-Global Warming and a storyline approach based on 16 CMIP6 models. Results show intensified wind speed, sea level pressure drop and precipitation levels for six events with amplified increases for individual storylines.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Xuanxuan Wang, Yaning Chen, Zhi Li, Gonghuan Fang, Fei Wang, and Haichao Hao
Hydrol. Earth Syst. Sci., 25, 3281–3299, https://doi.org/10.5194/hess-25-3281-2021, https://doi.org/10.5194/hess-25-3281-2021, 2021
Short summary
Short summary
The growing water crisis in Central Asia and the complex water politics of the region's transboundary rivers are a hot topic for research, while the dynamic changes of water politics in Central Asia have yet to be studied in depth. Based on the Gini coefficient, water political events and social network analysis, we analyzed the matching degree between water and socio-economic elements and the dynamics of hydropolitics in transboundary river basins of Central Asia.
Feiteng Wang, Xin Zhang, Fanglong Wang, Mengyuan Song, Zhongqin Li, and Jing Ming
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-133, https://doi.org/10.5194/tc-2021-133, 2021
Preprint withdrawn
Short summary
Short summary
The ongoing pandemic of COVID-19 impacts deeply in every aspects of human life and nature. After investigate the air pollutants in Xinjiang from 2019 through 2020, we find the mobility restrictions due to the COVID-19 dipped air NO2 concentration twice from 2019 normal in 2020 and snow chemistry records also show abnormal decrease in Urumqi Glacier No. 1.
Miaomiao Ma, Juan Lv, Zhicheng Su, Jamie Hannaford, Hongquan Sun, Yanping Qu, Zikang Xing, Lucy Barker, and Yaxu Wang
Proc. IAHS, 383, 267–272, https://doi.org/10.5194/piahs-383-267-2020, https://doi.org/10.5194/piahs-383-267-2020, 2020
Zikang Xing, Miaomiao Ma, Zhicheng Su, Juan Lv, Peng Yi, and Wenlong Song
Proc. IAHS, 383, 261–266, https://doi.org/10.5194/piahs-383-261-2020, https://doi.org/10.5194/piahs-383-261-2020, 2020
Feiteng Wang, Xiaoying Yue, Lin Wang, Huilin Li, Zhencai Du, Jing Ming, and Zhongqin Li
The Cryosphere, 14, 2597–2606, https://doi.org/10.5194/tc-14-2597-2020, https://doi.org/10.5194/tc-14-2597-2020, 2020
Short summary
Short summary
How to mitigate the melting of most mountainous glaciers is a disturbing issue for scientists and the public. We chose the Muz Taw Glacier of the Sawir Mountains as our study object. We carried out two artificial precipitation experiments on the glacier to study the role of precipitation in mitigating its melting. The average mass loss from the glacier decreased by over 14 %. We also propose a possible mechanism describing the role of precipitation in mitigating the melting of the glaciers.
Yaxu Wang, Juan Lv, Jamie Hannaford, Yicheng Wang, Hongquan Sun, Lucy J. Barker, Miaomiao Ma, Zhicheng Su, and Michael Eastman
Nat. Hazards Earth Syst. Sci., 20, 889–906, https://doi.org/10.5194/nhess-20-889-2020, https://doi.org/10.5194/nhess-20-889-2020, 2020
Short summary
Short summary
Due to the specific applicability of drought impact indicators, this study identifies which drought indicators are suitable for characterising drought impacts and the contribution of vulnerability factors. The results show that the relationship varies across different drought impacts and cities; some factors have a strong positive correlation with drought vulnerability. This study can support drought planning work and provide background for the indices used in drought monitoring applications.
Chunhai Xu, Zhongqin Li, Huilin Li, Feiteng Wang, and Ping Zhou
The Cryosphere, 13, 2361–2383, https://doi.org/10.5194/tc-13-2361-2019, https://doi.org/10.5194/tc-13-2361-2019, 2019
Short summary
Short summary
We take Urumqi Glacier No. 1 as an example and validate a long-range terrestrial laser scanner (TLS) as an efficient tool for monitoring annual and intra-annual mass balances, especially for inaccessible glacier areas where no glaciological measurements are available. The TLS has application potential for glacier mass-balance monitoring in China. For wide applications of the TLS, we can select some benchmark glaciers and use stable scan positions and in-situ-measured densities of snow–firn.
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
Short summary
We estimate the phase lag of surface states and heat fluxes to incoming solar radiation at the sub-daily timescale. While evapotranspiration reveals a minor phase lag, the vapor pressure deficit used as input by Penman–Monteith approaches shows a large phase lag. The surface-to-air temperature gradient used by energy balance residual approaches shows a small phase shift in agreement with the sensible heat flux and thus explains the better correlation of these models at the sub-daily timescale.
Lu Gao, Jianhui Wei, Lingxiao Wang, Matthias Bernhardt, Karsten Schulz, and Xingwei Chen
Earth Syst. Sci. Data, 10, 2097–2114, https://doi.org/10.5194/essd-10-2097-2018, https://doi.org/10.5194/essd-10-2097-2018, 2018
Short summary
Short summary
High-resolution temperature data sets are important for the Chinese Tian Shan, which has a complex ecological environment system. This study presents a unique high-resolution (1 km, 6-hourly) air temperature data set for this area from 1979 to 2016 based on a robust statistical downscaling framework. The strongest advantage of this method is its independence of local meteorological stations due to a model internal, vertical lapse rate scheme. This method was validated for other mountains.
Xiaowen Wang, Lin Liu, Lin Zhao, Tonghua Wu, Zhongqin Li, and Guoxiang Liu
The Cryosphere, 11, 997–1014, https://doi.org/10.5194/tc-11-997-2017, https://doi.org/10.5194/tc-11-997-2017, 2017
Short summary
Short summary
Rock glaciers are abundant in high mountains in western China but have been ignored for 20 years. We used a new remote-sensing-based method to map active rock glaciers in the Chinese part of the Tien Shan and compiled an inventory of 261 active rock glaciers and included quantitative information about their locations, geomorphic parameters, and downslope velocities. Our dataset suggests that the lower limit of permafrost there is 2500–2800 m.
Yaning Chen, Weihong Li, Gonghuan Fang, and Zhi Li
Hydrol. Earth Syst. Sci., 21, 669–684, https://doi.org/10.5194/hess-21-669-2017, https://doi.org/10.5194/hess-21-669-2017, 2017
Short summary
Short summary
This paper reviews the status of hydrological modeling in the mountainous region of central Asia, discussing the limitations of the available models and shedding light on future directions. We conclude that the main sources of uncertainty in hydrological modeling are the input uncertainty and lack of understanding of the hydrological regimes. Future focuses should be on the use of multi-source of input data combined with multi-objective calibration and validation.
Yujin Zeng, Zhenghui Xie, Yan Yu, Shuang Liu, Linying Wang, Binghao Jia, Peihua Qin, and Yaning Chen
Hydrol. Earth Syst. Sci., 20, 2333–2352, https://doi.org/10.5194/hess-20-2333-2016, https://doi.org/10.5194/hess-20-2333-2016, 2016
Short summary
Short summary
In arid areas, stream–aquifer water exchange essentially sustains the growth and subsistence of riparian ecosystem. To quantify this effect for intensity and range, a stream–riverbank scheme was incorporated into a state-of-the-art land model, and some runs were set up over Heihe River basin, northwestern China. The results show that the hydrology circle is significantly changed, and the ecological system is benefitted greatly by the river water lateral transfer within a 1 km range to the stream.
Zhi Li, Yaning Chen, Yang Wang, and Gonghuan Fang
Hydrol. Earth Syst. Sci., 20, 2169–2178, https://doi.org/10.5194/hess-20-2169-2016, https://doi.org/10.5194/hess-20-2169-2016, 2016
Short summary
Short summary
Global net primary production (NPP) slightly increased in 2000–2014. More than 64 % of vegetated land in the Northern Hemisphere (NH) showed increased NPP, while 60.3 % in Southern Hemisphere (SH) showed a decreasing trend. Vegetation greening and climate change promote rises of global evapotranspiration (ET). The increased rate of ET in the NH is faster than that in the SH. Meanwhile, global warming and vegetation greening accelerate evaporation in soil moisture. Continuation of these trends will likely exacerbate the risk of ecological drought.
Xianwei Wang, Yuan Zhu, Yaning Chen, Hailing Zheng, Henan Liu, Huabing Huang, Kai Liu, and Lin Liu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-72, https://doi.org/10.5194/tc-2016-72, 2016
Preprint withdrawn
Short summary
Short summary
The study investigates the snow cover variations in the Amur River Basin (ARB) using MODIS observations from 2000–2014. Forest (about 50 %) demonstrates complex influences on the snow accumulation and melting processes and on optical satellite snow cover mapping. The snow cover increase in ARB is associated with the decrease of air temperature during the study period. The increasing air temperature in ARB projects a decrease of snow cover extent and periods in the coming years.
Jianhua Xu, Yaning Chen, Ling Bai, and Yiwen Xu
Hydrol. Earth Syst. Sci., 20, 1447–1457, https://doi.org/10.5194/hess-20-1447-2016, https://doi.org/10.5194/hess-20-1447-2016, 2016
C. Du, F. Sun, J. Yu, X. Liu, and Y. Chen
Hydrol. Earth Syst. Sci., 20, 393–409, https://doi.org/10.5194/hess-20-393-2016, https://doi.org/10.5194/hess-20-393-2016, 2016
Short summary
Short summary
We define the equivalent precipitation to include local precipitation, inflow water and soil water storage change as the water supply in the Budyko framework. With the newly defined water supply, the Budyko curve can successfully describe the relationship between the evapotranspiration ratio and the aridity index at both annual and monthly timescales in unclosed basins. We develop a new Fu-type Budyko equation with two non-dimensional parameters (ω and λ) based on the deviation of Fu's equation.
G. H. Fang, J. Yang, Y. N. Chen, and C. Zammit
Hydrol. Earth Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-2015, https://doi.org/10.5194/hess-19-2547-2015, 2015
Short summary
Short summary
This study compares the effects of five precipitation and three temperature correction methods on precipitation, temperature, and streamflow through loosely coupling RCM (RegCM) and a distributed hydrological model (SWAT) in terms of frequency-based indices and time-series-based indices. The methodology and results can be used for other regions and other RCM and hydrologic models, and for impact studies of climate change on water resources at a regional scale.
Y. N. Chen, W. H. Li, H. H. Zhou, Y. P. Chen, X. M. Hao, A. H. Fu, and J. X. Ma
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-14819-2014, https://doi.org/10.5194/bgd-11-14819-2014, 2014
Revised manuscript not accepted
J. Yang, F. Castelli, and Y. Chen
Hydrol. Earth Syst. Sci., 18, 4101–4112, https://doi.org/10.5194/hess-18-4101-2014, https://doi.org/10.5194/hess-18-4101-2014, 2014
Related subject area
Discipline: Other | Subject: Climate Interactions
The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet
Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model
Antony Siahaan, Robin S. Smith, Paul R. Holland, Adrian Jenkins, Jonathan M. Gregory, Victoria Lee, Pierre Mathiot, Antony J. Payne, Jeff K. Ridley, and Colin G. Jones
The Cryosphere, 16, 4053–4086, https://doi.org/10.5194/tc-16-4053-2022, https://doi.org/10.5194/tc-16-4053-2022, 2022
Short summary
Short summary
The UK Earth System Model is the first to fully include interactions of the atmosphere and ocean with the Antarctic Ice Sheet. Under the low-greenhouse-gas SSP1–1.9 (Shared Socioeconomic Pathway) scenario, the ice sheet remains stable over the 21st century. Under the strong-greenhouse-gas SSP5–8.5 scenario, the model predicts strong increases in melting of large ice shelves and snow accumulation on the surface. The dominance of accumulation leads to a sea level fall at the end of the century.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, and Antoinette Alias
The Cryosphere, 13, 3023–3043, https://doi.org/10.5194/tc-13-3023-2019, https://doi.org/10.5194/tc-13-3023-2019, 2019
Short summary
Short summary
The atmospheric model ARPEGE is used with a stretched grid in order to reach an average horizontal resolution of 35 km over Antarctica. Over 1981–2010, we forced the model with observed and modelled sea surface conditions (SSCs). For the late 21st century, we use original and bias-corrected sea surface conditions from RCP8.5 climate projections. We assess the impact of using direct or bias-corrected SSCs for the evolution of Antarctic climate and surface mass balance.
Cited articles
Bai, L., Wang, W., Yao, Y., Ma, J., and Li, L.: Reliability of NCEP/NCAR and ERA-Interim Reanalysis Data on Tianshan Mountainous Area, Desert and Oasis Meteorology, 7, 51–56, 2013.
Beniston, M. and Rebetez, M.: Regional behavior of minimum temperatures in Switzerland for the period 1979–1993, Theor. Appl. Climatol., 53, 231–243, 1996.
Che, T.: Long-term series of daily snow depth dataset in China (1979–2019), National Tibetan Plateau Data Center, https://doi.org/10.11888/Geogra.tpdc.270194, 2015.
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T. J.: Snow depth derived from passive microwave remote-sensing data in China, Ann. Glaciol., 49, 145–154, 2008.
Chen, Y., Li, W., Deng, H., Fang, G., and Li, Z.: Changes in Central Asia's water tower: past, present and future, Sci. Rep.-UK, 6, 35458, https://doi.org/10.1038/srep35458, 2016.
CMA: http://data.cma.cn/, last access: 17 December 2021.
Dai, L., Che, T., Ding, Y., and Hao, X.: Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing, The Cryosphere, 11, 1933–1948, https://doi.org/10.5194/tc-11-1933-2017, 2017.
Dai, L. Y., Che, T., and Ding, Y. J.: Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China, Remote Sens.-Basel, 7, 7212–7230, 2015.
Deng, H., Chen, Y., and Li, Y.: Glacier and snow variations and their impacts on regional water resources in mountains, J. Geogr. Sci., 29, 84–100, 2019.
Diaz, H. F. and Bradley, R. S.: Temperature variations during the last century at high elevation sites, Climatic Change, 36, 253–279, 1997.
Diaz, H. F. and Eischeid, J. K.: Disappearing “alpine tundra” Köppen climatic type in the western United States, Geophys. Res. Lett., 34, L18707, https://doi.org/10.1029/2007GL031253, 2007.
Dickinson, R. E.: Land surface processes and climate-surface albedos and energy balance, Adv. Geophys., 25, 305–353, 1983.
Ding, Y., Liu, S., Li, J., and Shangguan, D.: The retreat of glaciers in response to recent climate warming in western China, Ann. Glaciol., 43, 97–105, 2006.
Dong, D., Huang, G., Qu, X., Tao, W., and Fan, G.: Temperature trend–altitude relationship in China during 1963–2012, Theor. Appl. Climatol., 122, 285–294, 2015.
Du, J.: Change of temperature in Tibetan Plateau from 1961 to 2000, Acta Geographica Sinica, 56, 682–690, 2001 (in Chinese).
Gao, L., Bernhardt, M., and Schulz, K.: Elevation correction of ERA-Interim temperature data in complex terrain, Hydrol. Earth Syst. Sci., 16, 4661–4673, https://doi.org/10.5194/hess-16-4661-2012, 2012.
Gao, L., Hao, L., and Chen, X. W.: Evaluation of ERA-interim monthly temperature data over the Tiberan Plateau, J. Mt. Sci., 11, 1154–1168, 2014.
Gao, L., Bernbardt, M., Schulz, K., and Chen, X. W.: Elevation correction of ERA-Interim temperature data in the Tibetan Plateau, Int. J. Climatol., 37, 3540–3552, 2017.
Gao, L., Wei, J., Wang, L., Bernhardt, M., Schulz, K., and Chen, X.: A high-resolution air temperature data set for the Chinese Tian Shan in 1979–2016, Earth Syst. Sci. Data, 10, 2097–2114, https://doi.org/10.5194/essd-10-2097-2018, 2018.
Gao, Y., Chen, F., Lettenmaier, D. P., Xu, J., Xiao, L., and Li, X.: Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau, npj Climate and Atmospheric Science, 1, 19, https://doi.org/10.1038/s41612-018-0030-z, 2018.
Geodata: http://www.geodata.cn, last access: 17 December 2021.
Guo, L. and Li, L.: Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China, Int. J. Climatol., 35, 1379–1393, 2015.
Guo, D., Sun, J., Yang, K., Pepin, N., and Xu, Y.: Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets, J. Geophys. Res., 124, 8511–8521, 2019.
Guo, D., Pepin, N., Yang, K., Sun, J., and Li, D.: Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau, Sci. Bull., 66, 1146–1150, 2021.
Hairiguli, N., Yusufujiang, R., Madiniyati, D., and Roukeyamu, A.: Adaptability Analysis of ERA-Interim and GHCN-CAM Reanalyzed Data Temperature Values in Tianshan Mountains Area, China, Mountain Research, 37, 613–621, 2019.
Hall, D. K., Salomonson, V. V., and Riggs, G. A.: MODIS/Terra Snow Cover 8-Day L3 Global 500 m SIN Grid, Version 5, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/C574UGKQQU1T, 2006.
Harding, R. J., Gryning, S. E., Halldin, S., and Lloyd, C. R.: Progress in understanding of land surface/atmosphere exchanges at high latitudes, Theor. Appl. Climatol., 70, 5–18, 2001.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world's water towers, Nature, 577, 364–369, 2020.
Jungo, P. and Beniston, M.: Changes in the anomalies of extreme temperature anomalies in the 20th century at Swiss climatological stations located at different latitudes and altitudes, Theor. Appl. Climatol., 69, 1–12, 2001.
Li, B., Chen, Y., and Shi, X.: Does elevation dependent warming exist in high mountain Asia? Environ. Res. Lett., 15, 024012, https://doi.org/10.1088/1748-9326/ab6d7f, 2020.
Liu, X. and Hou, P.: Relationship between the climatic warming over the Qinghai -Xizang Plateau and its surrounding areas in recent 30 years and the elevation, Advances in Climate Change Research, 017, 245–249, 1998 (in Chinese).
Liu, X., Cheng, Z., Yan, L., and Yin, Z.: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings, Global Planet. Change, 68, 164–174, 2009.
Mcguire, C. R., Nufio, C. R., Bowers, M. D., and Guralnick, R. P.:
Elevation-dependent temperature trends in the Rocky Mountain Front Range:
changes over a 56- and 20-year record, PLoS ONE, 7, e44370,
https://doi.org/10.1371/journal.pone.0044370, 2012.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., and Yang, D. Q.: Elevation-dependent warming in mountain regions of the world, Nat. Clim. Change, 5, 424–430, 2015.
Pepin, N., Deng, H., Zhang, H., Zhang, F., Kang, S., and Yao, T.: An examination of temperature trends at high elevations across the Tibetan Plateau: the use of MODIS LST to understand patterns of elevation-dependent warming, J. Geophys. Res., 124, 5738–5756, 2019.
Rangwala, I. and Miller, J. R.: Climate change in mountains: a review of elevation-dependent warming and its possible causes, Climatic Change, 114, 527–547, 2012.
Rangwala, I., Miller, J. R., and Xu, M.: Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor, Geophys. Res. Lett., 36, L06703, https://doi.org/10.1029/2009GL037245, 2009.
Rangwala, I., Barsugli, J., Cozzetto, K., Neff, J. and Prairie, J.: Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models, Clim. Dynam., 39, 1823–1840, 2012.
Seidel, D. J. and Free, M.: Comparison of lower-tropospheric temperature climatologies and trends at low and high elevation radiosonde sites, Climatic Change, 59, 53–74, 2003.
Shi, T. L., Pu, W., Zhou, Y., Cui, J. C., Zhang, D. Z., and Wang, X.: Albedo
of Black Carbon-Contaminated Snow Across Northwestern China and the Validation With Model Simulation, J. Geophys. Res.-Atmos., 125, e2019JD032065, https://doi.org/10.1029/2019JD032065, 2020.
Shi, Y., Liu, C., and Kang, E.: The glacier inventory of China, Ann. Glaciol., 50, 1–11, 2009.
Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D. P.: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets, J. Geophys. Res.-Atmos., 115, D01110, https://doi.org/10.1029/2009jd012442, 2010.
Sorg, A., Bolch, T., Stoffel, M., Solomina, O. N., and Beniston, M.: Climate change impacts on glaciers and runoff in Tien Shan (Central Asia), Nat. Clim. Change, 2, 725–731, 2012.
Sun, Q., Miao, C., Duan, Q., and Wang, Y.: Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations, Global Planet. Change, 132, 1–10, 2015.
Thakuri, S., Dahal, S., Shrestha, D., Guyennon, N., Romano, E., Colombo, N., and Salerno, F.: Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015, Atmos. Res., 228, 261–269, 2019.
Vuille, M., Franquist, E., Garreaud, R., Lavado Casimiro, W. S., and Cáceres, B.: Impact of the global warming hiatus on Andean temperature, J. Geophys. Res.-Atmos., 120, 3745–3757, 2015.
Wang, K. C., Wang, P. C., Liu, J. M., Sparrow, M., Haginoya, S., and Zhou, X. J.: Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau, Bound.-Lay. Meteorol., 116, 117–129, 2005.
Wang, P., Tang, G., Cao, L., Liu, Q., and Ren, Y.: Surface air temperature variability and its relationship with altitude and latitude over the Tibetan Plateau in 1981–2010, Advances in Climate Change Research, 8, 313–319, 2012.
Wang, Q., Fan, X., and Wang, M.: Recent warming amplification over high elevation regions across the globe, Clim. Dynam., 43, 87–101, 2014.
Wu, X., Wang, Z., Zhou, X., Lai, C., and Chen, X.: Trends in temperature extremes over nine integrated agricultural regions in China, 1961–2011, Theor. Appl. Climatol., 129, 1279–1294, 2017.
Xu, M., Kang, S., Wu, H., and Yuan, X.: Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia, Atmos. Res., 203, 141–163, 2018.
Yan, L. andLiu, X.: Has climatic warming over the Tibetan Plateau paused or continued in recent years? Journal of Earth, Ocean and Atmospheric Sciences, 1, 13–28, 2014.
You, Q., Kang, S., Pepin, N., Flugel, W., Yan, Y., Behrawan, H., and Huang, J.: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data, Global Planet. Change, 71, 124–133, 2010.
You, Q., Chen, D., Wu, F., Pepin, N., Cai, Z., Ahrens, B., Jiang, Z., Wu, Z., Kang, S., and AghaKouchak, A.: Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives, Earth-Sci. Rev., 210, 103349, https://doi.org/10.1016/j.earscirev.2020.103349, 2020.
Zhang, C., Lu, D., Chen, X., Zhang, Y., Maisupova, B., and Tao, Y.: The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls, Remote Sens. Environ., 175, 271–281, 2016.
Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao, S., Li, X., Zhong, X., Xu, M., Meng, W., Neupane, B., Qin, X., and Sillanpää, M.: Black carbon and mineral dust in snow cover on the Tibetan Plateau, The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, 2018.
Short summary
There is a widespread controversy on the existence of the elevation-dependent warming (EDW) phenomenon due to the limited observations in high mountains. This study provides new evidence of EDW from the Chinese Tian Shan based on a high-resolution (1 km, 6-hourly) air temperature dataset. The result reveals the significant EDW on a monthly scale. The warming rate of the minimum temperature in winter showed a significant elevation dependence (p < 0.01), especially above 3000 m.
There is a widespread controversy on the existence of the elevation-dependent warming (EDW)...