Articles | Volume 15, issue 11
The Cryosphere, 15, 5099–5114, 2021
https://doi.org/10.5194/tc-15-5099-2021
The Cryosphere, 15, 5099–5114, 2021
https://doi.org/10.5194/tc-15-5099-2021

Research article 09 Nov 2021

Research article | 09 Nov 2021

The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial

Rachel Diamond et al.

Related authors

Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-134,https://doi.org/10.5194/cp-2021-134, 2021
Preprint under review for CP
Short summary
Sea ice floe size: its impact on pan-Arctic and local ice mass, and required model complexity
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-217,https://doi.org/10.5194/tc-2021-217, 2021
Preprint under review for TC
Short summary
Reconstructing Antarctic winter sea-ice extent during Marine Isotope Stage 5e
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-102,https://doi.org/10.5194/cp-2021-102, 2021
Revised manuscript accepted for CP
Short summary
Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium
Janica C. Bühler, Carla Roesch, Moritz Kirschner, Louise Sime, Max D. Holloway, and Kira Rehfeld
Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021,https://doi.org/10.5194/cp-17-985-2021, 2021
Short summary
An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021,https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Climate Interactions
Analyzing links between simulated Laptev Sea sea ice and atmospheric conditions over adjoining landmasses using causal-effect networks
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere, 14, 4201–4215, https://doi.org/10.5194/tc-14-4201-2020,https://doi.org/10.5194/tc-14-4201-2020, 2020
Short summary
Clouds damp the radiative impacts of polar sea ice loss
Ramdane Alkama, Patrick C. Taylor, Lorea Garcia-San Martin, Herve Douville, Gregory Duveiller, Giovanni Forzieri, Didier Swingedouw, and Alessandro Cescatti
The Cryosphere, 14, 2673–2686, https://doi.org/10.5194/tc-14-2673-2020,https://doi.org/10.5194/tc-14-2673-2020, 2020
Short summary

Cited articles

Årthun, M., Eldevik, T., and Smedsrud, L. H.: The role of Atlantic heat transport in future Arctic winter sea ice loss, J. Climate, 32, 3327–3341, 2019. a
Auclair, G. and Tremblay, L. B.: The role of ocean heat transport in rapid sea ice declines in the Community Earth System Model Large Ensemble, J. Geophys. Res.-Oceans, 123, 8941–8957, 2018. a
Berger, A. and Loutre, M.-F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, 1991. a
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res.-Oceans, 104, 15669–15677, 1999. a
CAPE members: Last Interglacial Arctic warmth confirms polar amplification of climate change, Quaternary Sci. Rev., 25, 1383–1400, 2006. a
Download
Short summary
The Hadley Centre Global Environment Model version 3 (HadGEM3) is the first coupled climate model to simulate an ice-free summer Arctic during the Last Interglacial (LIG), 127 000 years ago, and yields accurate Arctic surface temperatures. We investigate the causes and impacts of this extreme simulated ice loss and, in particular, the role of melt ponds.