Articles | Volume 15, issue 2
https://doi.org/10.5194/tc-15-501-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-501-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modal sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modeling
Antoine Guillemot
CORRESPONDING AUTHOR
Laboratoire ISTerre, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, 38000 Grenoble, France
Laurent Baillet
Laboratoire ISTerre, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, 38000 Grenoble, France
Stéphane Garambois
Laboratoire ISTerre, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, 38000 Grenoble, France
Xavier Bodin
Laboratoire EDYTEM, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont-Blanc, 73000 Chambéry, France
Agnès Helmstetter
Laboratoire ISTerre, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, 38000 Grenoble, France
Raphaël Mayoraz
Services des Forêts, des Cours d'eau et du Paysage, Canton of Valais, 1951 Sion, Switzerland
Eric Larose
Laboratoire ISTerre, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, 38000 Grenoble, France
Related authors
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2393, https://doi.org/10.5194/egusphere-2024-2393, 2024
Short summary
Short summary
This study presents for the first time a robust methodological approach to detect and analyse rock glacier kinematics using 24 years of Landsat 7/8 imagery. Within a small region in the semi-arid andes, 382 movements were monitored showing an average velocity of 0.3 ± 0.07 m yr-1, with rock glaciers moving faster. We highlight the value of integrating optical imagery and radar interferometry supporting monitoring of rock glacier kinematics, using available medium-resolution optical imagery.
Mohit Mishra, Gildas Besançon, Guillaume Chambon, and Laurent Baillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1227, https://doi.org/10.5194/egusphere-2024-1227, 2024
Short summary
Short summary
This work was initiated in the context of a large interdisciplinary research project about Risk at Grenoble University, France. It relates to the challenging topic of landslide monitoring, and combines geotechnical sciences with techniques from control system engineering. Considering a specific modelling approach, the study provides a methodology towards estimation of some landslide parameters and their use in motion prediction. This could then be extended to the design of alert systems.
Mathieu Le Breton, Éric Larose, Laurent Baillet, Yves Lejeune, and Alec van Herwijnen
The Cryosphere, 17, 3137–3156, https://doi.org/10.5194/tc-17-3137-2023, https://doi.org/10.5194/tc-17-3137-2023, 2023
Short summary
Short summary
We monitor the amount of snow on the ground using passive radiofrequency identification (RFID) tags. These small and inexpensive tags are wirelessly read by a stationary reader placed above the snowpack. Variations in the radiofrequency phase delay accurately reflect variations in snow amount, known as snow water equivalent. Additionally, each tag is equipped with a sensor that monitors the snow temperature.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Arnaud Duranel, Julian R. Thompson, Helene Burningham, Philippe Durepaire, Stéphane Garambois, Robert Wyns, and Hervé Cubizolle
Hydrol. Earth Syst. Sci., 25, 291–319, https://doi.org/10.5194/hess-25-291-2021, https://doi.org/10.5194/hess-25-291-2021, 2021
Short summary
Short summary
Peat-forming wetlands (mires) provide multiple ecosystem services, which depend on peat remaining waterlogged. Using hydrological modelling, we show that, contrary to a common assumption, groundwater inflow can be a quantitatively important and functionally critical element of the water balance of mires in hard-rock upland and mountain areas. This influence is such that patterns of groundwater upwelling and seepage explain the spatial distribution of mires in the landscape.
G. Marsy, F. Vernier, X. Bodin, D. Cusicanqui, W. Castaings, and E. Trouvé
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 459–466, https://doi.org/10.5194/isprs-annals-V-2-2020-459-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-459-2020, 2020
Marco Marcer, Charlie Serrano, Alexander Brenning, Xavier Bodin, Jason Goetz, and Philippe Schoeneich
The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, https://doi.org/10.5194/tc-13-141-2019, 2019
Short summary
Short summary
This study aims to assess the occurrence of rock glacier destabilization in the French Alps, a process that causes a landslide-like behaviour of permafrost debris slopes. A significant number of the landforms in the region were found to be experiencing destabilization. Multivariate analysis suggested a link between destabilization occurrence and permafrost thaw induced by climate warming. These results call for a regional characterization of permafrost hazards in the context of climate change.
Floriane Provost, Jean-Philippe Malet, Clément Hibert, Agnès Helmstetter, Mathilde Radiguet, David Amitrano, Nadège Langet, Eric Larose, Clàudia Abancó, Marcel Hürlimann, Thomas Lebourg, Clara Levy, Gaëlle Le Roy, Patrice Ulrich, Maurin Vidal, and Benjamin Vial
Earth Surf. Dynam., 6, 1059–1088, https://doi.org/10.5194/esurf-6-1059-2018, https://doi.org/10.5194/esurf-6-1059-2018, 2018
Short summary
Short summary
Seismic sources generated by the deformation of unstable slopes are diverse in terms of signal properties and mechanisms. Standardized catalogues of landslide endogenous seismicity can help understanding the physical processes controlling slope dynamics. We propose a generic typology of seismic sources based on the analysis of signals recorded at various instrumented slopes. We demonstrate that the seismic signals present similar features at different sites and discuss their mechanical sources.
Related subject area
Discipline: Frozen ground | Subject: Alpine Glaciers
Brief communication: On the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Cited articles
Amitrano, D., Arattano, M., Chiarle, M., Mortara, G., Occhiena, C., Pirulli, M., and Scavia, C.: Microseismic activity analysis for the study of the rupture mechanisms in unstable rock masses, Nat. Hazards Earth Syst. Sci., 10, 831–841, https://doi.org/10.5194/nhess-10-831-2010, 2010.
Arenson, L. U. and Springman, S. M.: Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples, Can. Geotech. J., 42, 412–430, https://doi.org/10.1139/t04-111, 2005.
Arenson, L. U., Kääb, A., and O'Sullivan, A.: Detection and Analysis of Ground Deformation in Permafrost Environments, Permafrost Periglac., 27, 339–351, https://doi.org/10.1002/ppp.1932, 2016.
Barsch, D.: Rockglaciers: indicators for the present and former geoecology in high mountain environments, Springer, New York, 1996.
Bathe, K.-J.: Finite Element Procedures, Prentice-Hall, Englewood Cliffs, N.J., available at: http://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf (last access: 29 January 2021), 2006.
Bodin, X., Thibert, E., Fabre, D., Ribolini, A., Schoeneich, P., Francou, B., Reynaud, L., and Fort, M.: Two decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps, Permafrost Periglac., 20, 331–344, https://doi.org/10.1002/ppp.665, 2009.
Bodin, X., Krysiecki, J.-M., Schoeneich, P., Roux, O. L., Lorier, L., Echelard, T., Peyron, M., and Walpersdorf, A.: The 2006 Collapse of the Bérard Rock Glacier (Southern French Alps), Permafrost Periglac., 28, 209–223, https://doi.org/10.1002/ppp.1887, 2016.
Bodin, X., Thibert, E., Sanchez, O., Rabatel, A., and Jaillet, S.:
Multi-Annual Kinematics of an Active Rock Glacier Quantified from Very
High-Resolution DEMs: An Application-Case in the French Alps, Remote
Sens., 10, 547, https://doi.org/10.3390/rs10040547, 2018.
Bonnefoy-Claudet, S., Cotton, F., and Bard, P.-Y.: The nature of noise wavefield and its applications for site effects studies, Earth-Sci. Rev., 79, 205–227, https://doi.org/10.1016/j.earscirev.2006.07.004, 2006.
Buchli, T., Kos, A., Limpach, P., Merz, K., Zhou, X., and Springman, S. M.: Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland, Permafrost Periglac., 29, 3–20, https://doi.org/10.1002/ppp.1968, 2018.
Burjánek, J., Gassner-Stamm, G., Poggi, V., Moore, J. R., and Fäh, D.: Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int., 180, 820–828, https://doi.org/10.1111/j.1365-246X.2009.04451.x, 2010.
Burjánek, J., Moore, J. R., Yugsi Molina, F. X., and Fäh, D.: Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int., 188, 559–569, https://doi.org/10.1111/j.1365-246X.2011.05272.x, 2012.
Carcione, J. M. and Seriani, G.: Seismic and ultrasonic velocities in permafrost, Geophys. Prospect., 46, 441–454,
https://doi.org/10.1046/j.1365-2478.1998.1000333.x, 1998.
Carcione, J. M., Morency, C., and Santos, J. E.: Computational poroelasticity – A review, Geophysics, 75, 75A229–75A243, https://doi.org/10.1190/1.3474602, 2010.
Carmichael, J. D.: Narrowband signals recorded near a moulin that are not moulin tremor: a cautionary short note, Ann. Glaciol., 60, 231–237, https://doi.org/10.1017/aog.2019.23, 2019.
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the seasonal rhythm of rock glacier flow, Earth Planet. Sc. Lett., 528, 115844, https://doi.org/10.1016/j.epsl.2019.115844, 2019.
CREALP: Glacier rocheux de Gugla – Investigations 2014 – Calcul des volumes instables, available at: https://www.vs.ch/programme-pilote-ofev-cryosphere (last access: 29 January 2021), 2015 (in French).
CREALP: Glacier rocheux de Gugla – Investigations 2015,
available at:
https://www.vs.ch/programme-pilote-ofev-cryosphere (last access: 29 January 2021), 2016 (in French).
Delaloye, R., Perruchoud, E., Avian, M., Kaufmann, V., Bodin, X., Hausmann, H., Ikeda, A., Kääb, A., Kellerer-Pirklbauer, A., Krainer, K., Lambiel, C., Mihajlovic, D., Staub, B., Roer, I. and Thibert, E.: Recent interannual variations of rock glacier creep in the European Alps, in: Recent interannual variations of rock glacier creep in the European Alps, edited by: Delaloye, R., Perruchoud, E., Avian, M., Kaufmann, V., Bodin, X., Hausmann, H., Ikeda, A., Kääb, A., Kellerer-Pirklbauer, A., Krainer, K., Lambiel, C.,
Mihajlovic, D., Staub, B., Roer, I., and Thibert, E., 9th International
Conference on Permafrost, Fairbanks, Alaska, 29 June–3 July 2008, 343–348, 2008.
Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M., and Gachet, S.: Rapidly moving rock glaciers in Mattertal, Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 11, 21–31, 2012.
Demanet D.: Tomographie 2D et 3D à partir de mesures géophysiques en surface et en forage, PhD thesis, University of Liège, 2000.
Duvillard, P. A., Revil, A., Qi, Y., Ahmed, A. S., Coperey, A., and Ravanel, L.: Three-Dimensional Electrical Conductivity and Induced Polarization Tomography of a Rock Glacier, J. Geophys. Res.-Sol. Ea., 123, 9528–9554, https://doi.org/10.1029/2018JB015965, 2018.
Francou, B. and Reynaud, L.: 10 year surficial velocities on a rock glacier
(Laurichard, French Alps), Permafrost Periglac., 3,
209–213, https://doi.org/10.1002/ppp.3430030306, 1992.
Fu, Z.-F. and He, J.: Modal Analysis, Butterworth-Heinemann, 304, https://doi.org/10.1016/B978-0-7506-5079-3.X5000-1, 2001.
Geo2X, C. de R. sur l'Environnement A. (CREALP): Reconnaissances
géophysiques - Glcair rocheux de Gugla (VS),
available at:
https://www.vs.ch/programme-pilote-ofev-cryosphere (last access: 29 January 2021), 2014 (in French).
Guéguen, P., Langlais, M., Garambois, S., Voisin, C., and
Douste-Bacqué, I.: How sensitive are site effects and building response
to extreme cold temperature? The case of the Grenoble's (France) City Hall
building, Bull. Earthquake Eng., 15, 889–906,
https://doi.org/10.1007/s10518-016-9995-3, 2017.
Guillemot, A., Helmstetter, A., Larose, É., Baillet, L., Garambois, S., Mayoraz, R., and Delaloye, R.: Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling, Geophys. J. Int., 221, 1719–1735, https://doi.org/10.1093/gji/ggaa097, 2020.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O.,
Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and
Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I.,
Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., and Phillips, M.:
Mountain permafrost: development and challenges of a young research field,
J. Glaciol., 56, 1043–1058, https://doi.org/10.3189/002214311796406121,
2010.
Hausmann, H., Krainer, K., Brückl, E. and Ullrich, C.: Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys, Austrian J. Earth Sc., 105, 12–31, 2012.
Helmstetter, A. and Garambois, S.: Seismic monitoring of Séchilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls, J. Geophys. Res.-Earth, 115, F03016,
https://doi.org/10.1029/2009JF001532, 2010.
James, S. R., Knox, H. A., Abbott, R. E., Panning, M. P., and Screaton, E. J.: Insights Into Permafrost and Seasonal Active-Layer Dynamics From Ambient Seismic Noise Monitoring, J. Geophys. Res.-Earth,
124, 1798–1816, https://doi.org/10.1029/2019JF005051, 2019.
Johnson, C. W., Vernon, F., Nakata, N. and Ben-Zion, Y.: Atmospheric Processes Modulating Noise in Fairfield Nodal 5 Hz Geophones, Seismol. Res. Lett., 90, 1612–1618, https://doi.org/10.1785/0220180383, 2019.
Kääb, A., Frauenfelder, R., and Roer, I.: On the response of rockglacier creep to surface temperature increase, Global Planet. Change, 56, 172–187, https://doi.org/10.1016/j.gloplacha.2006.07.005, 2007.
Kaufmann, V., Sulzer, W., Seier, G., and Wecht, M.: Panta Rhei: Movement Change of Tschadinhorn Rock Glacier (Hohe Tauern Range, Austria), 1954–2017, Kartografija i geoinformacije (Cartography and Geoinformation), 18, 4–24, https://doi.org/10.32909/kg.18.31.1, 2019.
Kellerer-Pirklbauer, A., Delaloye, R., Lambiel, C., Gärtner-Roer, I., Kaufmann, V., Scapozza, C., Krainer, K., Staub, B., Thibert, E., Bodin, X., Fischer, A., Hartl, L., di Cella, U. M., Mair, V., Marcer, M., and Schoeneich, P.: Interannual variability of rock glacier flow velocities in the European Alps, Proceedings of the EUCOP5 5th European Conference on Permafrost, Chamonix-Mont Blanc, France. Vol. 23, 2018.
Kenner, R. and Magnusson, J.: Estimating the Effect of Different Influencing Factors on Rock Glacier Development in Two Regions in the Swiss Alps, Permafrost Periglac., 28, 195–208, https://doi.org/10.1002/ppp.1910, 2017.
Kenner, R., Pruessner, L., Beutel, J., Limpach, P., and Phillips, M.: How rock glacier hydrology, deformation velocities and ground temperatures interact: Examples from the Swiss Alps, Permafrost Periglac., 3–14, https://doi.org/10.1002/ppp.2023, 2019.
Kneisel, C., Hauck, C., Fortier, R., and Moorman, B.: Advances in geophysical methods for permafrost investigations, Permafrost Periglac., 19, 157–178, https://doi.org/10.1002/ppp.616, 2008.
Köhler, A. and Weidle, C.: Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: a case study in Svalbard, Earth Surf. Dynam., 7, 1–16, https://doi.org/10.5194/esurf-7-1-2019, 2019.
Kula, D., Olszewska, D., Dobiński, W., and Glazer, M.:
Horizontal-to-vertical spectral ratio variability in the presence of
permafrost, Geophys. J. Int., 214, 219–231, https://doi.org/10.1093/gji/ggy118, 2018.
Kummert, M. and Delaloye, R.: Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies, Geomorphology, 309, 60–76, https://doi.org/10.1016/j.geomorph.2018.02.021, 2018.
Kummert, M., Delaloye, R., and Braillard, L.: Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps, Permafrost Periglac., 29, 21–33, https://doi.org/10.1002/ppp.1960, 2018.
Lacroix, P. and Helmstetter, A.: Location of Seismic Signals Associated with Microearthquakes and Rockfalls on the Sechilienne Landslide, French Alps, B. Seismol. Soc. Am., 101, 341, https://doi.org/10.1785/0120100110, 2011.
Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., and Massey, C.: Environmental seismology: What can we learn on earth surface processes with ambient noise?, J. Appl. Geophys.,
116, 62–74, https://doi.org/10.1016/j.jappgeo.2015.02.001, 2015.
Leclaire, Ph., Cohen-Ténoudji, F., and Aguirre-Puente, J.: Extension of Biot's theory of wave propagation to frozen porous media, J. Acoust. Soc. Am., 96, 3753–3768, https://doi.org/10.1121/1.411336, 1994.
Lévy, C., Baillet, L., Jongmans, D., Mourot, P., and Hantz, D.: Dynamic response of the Chamousset rock column (Western Alps, France), J. Geophys. Res.-Earth, 115, F04043, https://doi.org/10.1029/2009JF001606,
2010.
Marcer, M., Serrano, C., Brenning, A., Bodin, X., Goetz, J., and Schoeneich, P.: Evaluating the destabilization susceptibility of active rock glaciers in the French Alps, The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, 2019a.
Marcer, M., Nielsen, S., Ribeyre, C., Kummert, M., Duvillard, P. A., Bodin, X., Schoeneich, P., and Génuite, K.: Investigating the slope failures at the Lou rock glacier front, French Alps, Permafrost Periglac., 31, 15–30, https://doi.org/10.1002/ppp.2035 2019b.
Marsy, G., Vernier, F., Bodin, X., Castaings, W. and Trouvé, E.: Détection automatique de zones en mouvement dans des séries d'images non recalées: application à la surveillance des mouvements gravitaires, Revue Française de Photogrammétrie et de
Télédétection, 217–218, 25–31, 2018.
Maurer, H. and Hauck, C.: Geophysical imaging of alpine rock glaciers, J. Glaciol., 53, 110–120, https://doi.org/10.3189/172756507781833893,
2007.
Merz, K., Maurer, H., Rabenstein, L., Buchli, T., Springman, S. M., and Zweifel, M.: Multidisciplinary geophysical investigations over an alpine rock glacierMultigeophysics over a rock glacier, Geophysics, 81,
WA1–WA11, https://doi.org/10.1190/geo2015-0157.1, 2016.
Michel, C., Guéguen, P., and Bard, P.-Y.: Dynamic parameters of structures extracted from ambient vibration measurements: An aid for the seismic vulnerability assessment of existing buildings in moderate seismic hazard regions, Soil Dyn. Earthquake Eng., 28, 593–604, oi:10.1016/j.soildyn.2007.10.002, 2008.
Michel, C., Guéguen, P., Arem, S. E., Mazars, J., and Kotronis, P.: Full-scale dynamic response of an RC building under weak seismic motions using earthquake recordings, ambient vibrations and modelling, Earthquake Eng. Struct. Dyn., 39, 419–441, https://doi.org/10.1002/eqe.948, 2010.
Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., and Prieto, G. A.: Monitoring southwest Greenland's ice sheet melt with ambient seismic noise, Sci. Adv., 2, e1501538, https://doi.org/10.1126/sciadv.1501538, 2016.
Parolai, S.: New Relationships between Vs, Thickness of Sediments, and Resonance Frequency Calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany), B. Seismol. Soc. Am., 92, 2521–2527, https://doi.org/10.1785/0120010248, 2002.
Preiswerk, L. E. and Walter, F.: High-Frequency (>2 Hz) Ambient Seismic Noise on High-Melt Glaciers: Green's Function Estimation and Source Characterization, J. Geophys. Res.-Earth, 123, 1667–1681, https://doi.org/10.1029/2017JF004498, 2018.
Preiswerk, L. E., Michel, C., Walter, F., and Fäh, D.: Effects of geometry on the seismic wavefield of Alpine glaciers, Ann. Glaciol., 60, 112–124, https://doi.org/10.1017/aog.2018.27, 2019.
RESIF: RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France [Data set], RESIF – Réseau Sismologique et géodésique Français.
https://doi.org/10.15778/RESIF.FR, available at:
https://www.fdsn.org/networks/detail/FR/ (last access: 29 January 2021), 1995.
RESIF: France 2015, MT_CAMPAGNE French Landslide Observatory temporary experiments French RESIF seismological portal, https://doi.org/10.15778/RESIF.1N2015, 2021.
Rice, R. W.: Evaluating Porosity Parameters for Porosity-Property Relations, J. Am. Ceram. Soc., 76, 1801–1808,
https://doi.org/10.1111/j.1151-2916.1993.tb06650.x, 1993.
Roeoesli, C., Walter, F., Ampuero, J.-P., and Kissling, E.: Seismic moulin tremor, J. Geophys. Res.-Sol. Ea., 121, 5838–5858,
https://doi.org/10.1002/2015JB012786, 2016.
Roux, P., Guéguen, P., Baillet, L., and Hamze, A.: Structural-change localization and monitoring through a perturbation-based inverse problem, J. Acoust. Soc. Am., 136, 2586–2597,
https://doi.org/10.1121/1.4897403, 2014.
Scotti, R., Crosta, G. B., and Villa, A.: Destabilisation of Creeping Permafrost: The Plator Rock Glacier Case Study (Central Italian Alps), Permafrost Periglac., 28, 224–236, https://doi.org/10.1002/ppp.1917, 2017.
Snieder, R. and Larose, E.: Extracting Earth's Elastic Wave Response from Noise Measurements, Annu. Rev. Earth Planet. Sc., 41,
183–206, https://doi.org/10.1146/annurev-earth-050212-123936, 2013.
Solomon, J.: PSD computations using Welch's method. [Power Spectral Density (PSD)], Sandia National Labs., Albuquerque, NM (United States), 1991.
Spillmann, T., Maurer, H., Green, A. G., Heincke, B., Willenberg, H., and Husen, S.: Microseismic investigation of an unstable mountain slope in the Swiss Alps, J. Geophys. Res.-Sol. Ea., 112,
https://doi.org/10.1029/2006JB004723, 2007.
Springman, S. M., Yamamoto, Y., Buchli, T., Hertrich, M., Maurer, H., Merz, K., Gärtner-Roer, I., and Seward, L.: Rock Glacier Degradation and Instabilities in the European Alps: A Characterisation and Monitoring Experiment in the Turtmanntal, CH, in: Landslide Science and Practice, Volume 4: Global Environmental Change, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer, Berlin, Heidelberg, 5–13, 2013.
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Bodin, X., Kääb, A., Mätzler, E., and Schrott, L.: Monitoring Rock Glacier Kinematics with Satellite Synthetic Aperture Radar, Remote Sens., https://doi.org/10.3390/rs12030559,
2020.
Timur, A.: Velocity of compressional waves in porous media at permafrost temperatures, Geophysics, 33, 584–595, https://doi.org/10.1190/1.1439954, 1968.
Wathelet, M., Jongmans, D., and Ohrnberger, M.: Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements, Near Surf. Geophys, 2, 211–221,
https://doi.org/10.3997/1873-0604.2004018, 2004.
Weber, S., Faillettaz, J., Meyer, M., Beutel, J., and Vieli, A.: Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH), J. Geophys. Res.-Earth, 123, 1363–1385,
https://doi.org/10.1029/2018JF004615, 2018a.
Weber, S., Fäh, D., Beutel, J., Faillettaz, J., Gruber, S., and Vieli, A.: Ambient seismic vibrations in steep bedrock permafrost used to infer variations of ice-fill in fractures, Earth Planet. Sc. Lett., 501, 119–127, https://doi.org/10.1016/j.epsl.2018.08.042, 2018b.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016 (data available at: https://doi.org/10.3929/ethz-b-000114470).
Short summary
Among mountainous permafrost landforms, rock glaciers are composed of boulders, fine frozen materials, water and ice in various proportions. Displacement rates of active rock glaciers can reach several m/yr, contributing to emerging risks linked to gravitational hazards. Thanks to passive seismic monitoring, resonance effects related to seasonal freeze–thawing processes of the shallower layers have been monitored and modeled. This method is an accurate tool for studying rock glaciers at depth.
Among mountainous permafrost landforms, rock glaciers are composed of boulders, fine frozen...