Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4781-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4781-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing
Alicia A. Dauginis
Department of Geography, Geomatics and Environment, University of Toronto Mississauga, Mississauga, L5L 1C6,
Canada
Department of Geography, Geomatics and Environment, University of Toronto Mississauga, Mississauga, L5L 1C6,
Canada
Related authors
No articles found.
Kathy L. Young and Laura C. Brown
Hydrol. Earth Syst. Sci., 28, 3931–3945, https://doi.org/10.5194/hess-28-3931-2024, https://doi.org/10.5194/hess-28-3931-2024, 2024
Short summary
Short summary
This work details the temperature and related variables of several High Arctic ponds in the Nanuit Itillinga (Polar Bear Pass) National Wildlife Area through nine seasons. The ponds show much variability in their temperature patterns over time and space. Ponds normally reached 10–15 °C for parts of the summer except in 2013, a cold summer season in which pond temperatures never exceeded 5 °C. This study contributes to the ongoing discussion of climate warming and its impact on Arctic landscapes.
Alexis L. Robinson, Sarah S. Ariano, and Laura C. Brown
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-156, https://doi.org/10.5194/hess-2020-156, 2020
Manuscript not accepted for further review
Short summary
Short summary
We present a comparison of measured and modelled ice phenology for High Arctic and temperate latitudes. Our findings show the importance of regionally specific snow and ice albedo parameterization is critical to the simulation of ice cover due to the impacts of albedo on ice thickness, melt and ice-off dates. Field measured temperate region snow and ice albedo resulted in improvements to modelled ice thickness (~ 0.1–10 cm of field data) and improved the modelled ice-off timing to 1 to 7 days.
Related subject area
Discipline: Sea ice | Subject: Seasonal Snow
From snow accumulation to snow depth distributions by quantifying meteoric ice fractions in the Weddell Sea
Local-scale variability of snow density on Arctic sea ice
Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024, https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Short summary
Antarctic sea ice maintains year-round snow cover, crucial for its energy and mass budgets. Despite its significance, snow depth remains poorly understood. Over the last decades, Snow Buoys have been deployed extensively on the sea ice to measure snow accumulation but not actual depth due to snow transformation into meteoric ice. Therefore, in this study we utilize sea ice and snow models to estimate meteoric ice fractions in order to calculate actual snow depth in the Weddell Sea.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, https://doi.org/10.5194/tc-13-1943-2019, 2019
Cited articles
Anselin, L.: Local Indicators of Spatial Association – LISA, Geogr.
Anal., 27, 93–115, https://doi.org/10.1111/j.1538-4632.1995.tb00338.x, 1995.
Arp, C. D., Jones, B. M., and Grosse, G.: Recent lake ice-out phenology
within and among lake districts of Alaska, USA, Limnol. Oceanogr., 58,
2013–2028, https://doi.org/10.4319/lo.2013.58.6.2013, 2013.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim.
Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation
linked to local evaporation and sea-ice retreat, Nature, 509, 479–482, https://doi.org/10.1038/nature13259, 2014.
Bliss, A. C. and Anderson, M. R.: Arctic sea ice melt onset timing from
passive microwave-based and surface air temperature-based methods, J.
Geophys. Res., 123, 9063–9080, https://doi.org/10.1029/2018JD028676, 2018.
Bliss, A. C., Miller, J. A., and Meier, W. N.: Comparison of Passive
Microwave-Derived Early Melt Onset Records on Arctic Sea Ice. Remote Sens.,
9, 199, https://doi.org/10.3390/rs9030199, 2017.
Bliss, A. C., Steele, M., Peng, G., and Meier, W. N.: Regional variability of
Arctic sea ice seasonal change climate indicators from a passive microwave
climate data record, Environ. Res. Lett., 14, 045003, https://doi.org/10.1088/1748-9326/aafb84, 2019.
Boisvert, L. N. and Stroeve, J. C.: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder, Geophys. Res. Lett., 42, 4439–4446, https://doi.org/10.1002/2015GL063775, 2015.
Borchers, H. W.: Package “pracma”, available at:
https://cran.r-project.org/web/packages/pracma/pracma.pdf (last access: 4 October 2021), CRAN [code], 2019.
Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M., Parmentier, F. W., Brown, R., Bhatt, U. S., Euskirchen, E. S., Romanovsky, V. E., Walsh, J. E., Overland, J. E., Wang, M., Corell, R. W., Meier, W. N., Wouters, B., Mernild, S., Mård, J., Pawlak, J., and Olsen, M. S.: Key indicators of Arctic climate
change: 1971–2017, Environ. Res. Lett., 14, 045010,
https://doi.org/10.1088/1748-9326/aafc1b, 2019.
Bronaugh, D. and Werner, A.: “zyp”, available at:
https://cran.r-project.org/web/packages/zyp/zyp.pdf (last access: 4 October 2021), CRAN [code], 2019.
Brown, L. C. and Duguay, C. R.: The fate of lake ice in the North American Arctic, The Cryosphere, 5, 869–892, https://doi.org/10.5194/tc-5-869-2011, 2011.
Brown, L. C. and Duguay, C. R.: Modelling lake ice phenology with sub-grid
cell variability, Adv. Meteorol., 2012, 529064,
https://doi.org/10.1155/2012/529064, 2012.
Brown, L. C., Howell, S. E., Mortin, J., and Derksen, C.: Evaluation of the
Interactive Multisensor Snow and Ice Mapping System (IMS) for monitoring sea
ice phenology, Remote Sens. Environ., 147, 65–78, https://doi.org/10.1016/j.rse.2014.02.012, 2014.
Brown, R., Derksen, C., and Wang, L.: Assessment of spring snow cover
duration variability over northern Canada from satellite datasets, Remote
Sens. Environ., 111, 367–381, https://doi.org/10.1016/j.rse.2006.09.035, 2007.
Brown, R., Derksen, C., and Wang, L.: A multi-data set analysis of
variability and change in Arctic spring snow cover extent, 1967–2008,
Geophys. Res., 115, D16111, https://doi.org/10.1029/2010JD013975, 2010.
Brubaker, K. L., Pinker, R. T., and Deviatova, E.: Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data, J. Hydrometeorol, 6, 1002–1017, 2005.
Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N., Radionov, V.
Barry, R. G., Bulygina, O. N., Essery, R. H. L., Frolov, D. M., Golubev, V. N., Grenfell, T. C., Petrushina, M. N., Razuvaev, V. N., Robinson, D. A., Romanov, P., Shindell, D., Shmakin, A. B., Sokratov, S. A., Warren, S., and Yang, D.: The changing face of Arctic
snow cover: a synthesis of observed and projected changes, Ambio, 40, 17–31,
https://doi.org/10.1007/s13280-011-0212-y, 2011.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C., and Zwally,
H. J.: Deriving long-term time series of sea ice cover from satellite
passive-microwave multisensor data sets, J. Geophys. Res., 104,
15803–15814, https://doi.org/10.1029/1999JC900081, 1999.
Chang, A. T. C., Foster, J. L., and Hall, D. K.: Effects of forest on the snow
parameters derived from microwave measurements during the BOREAS winter
field campaign, Hydrol. Process., 10, 1565–1574, https://doi.org/10.1002/(SICI)1099-1085(199612)10:12<1565::AID-HYP501>3.0.CO;2-5, 1996.
Chen, C., Lakhankar, T., Romanov, P., Helfrich, S., Powell, A., and
Khanbilvardi, R.: Validation of NOAA-Interactive Multisensor Snow and Ice
Mapping System (IMS) by Comparison with Ground-Based Measurements over
Continental United States. Remote Sens., 4, 1134–1145,
https://doi.org/10.3390/rs4051134, 2012.
Cho, E., Tuttle, S. E., and Jacobs, J. M.: Evaluating consistency of snow
water equivalent retrievals from passive microwave sensors over the north
central US: SSM/I vs. SSMIS and AMSR-E vs. AMSR2, Remote Sens., 9, 465,
https://doi.org/10.3390/rs9050465, 2017.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of
ECMWF atmospheric reanalyses of the global climate, Copernicus Climate
Change Service Climate Data Store (CDS) [data set], 1 September 2020, 2017.
Crawford, A. D., Horvath, S., Stroeve, J., Balaji, R., and Serreze, M. C.:
Modulation of sea ice melt onset and retreat in the Laptev Sea by the timing
of snow retreat in the West Siberian Plain, J. Geophys. Res., 123,
8691–8707, https://doi.org/10.1029/2018JD028697, 2018.
Dauginis, A. and Brown, L. C.: Sea ice and snow phenology in the Canadian Arctic
Archipelago from 1997–2018, Arctic Sci., 7,
https://doi.org/10.1139/AS-2020-0024, 2020.
Derksen, C.: The contribution of AMSR-E 18.7 and 10.7 GHz measurements to
improved boreal forest snow water equivalent retrievals, Remote Sens.
Environ., 112, 2701–2710, https://doi.org/10.1016/j.rse.2008.01.001,
2008.
Derksen, C., Brown, R., and Walker, A.: Merging conventional (1915–92) and
passive microwave (1978–2002) estimates of snow extent and water equivalent
over central North America, J. Hydrometeor., 5, 850–861, https://doi.org/10.1175/1525-7541(2004)005<0850:MCAPME>2.0.CO;2, 2004.
Derksen, C., Smith, S. L., Sharp M., Brown, L., Howell, S., Copland, L., Mueller, D., Gauthier, Y., Fletcher, C., Tivy, A., Bernier, M., Bourgeois, J., Brown, R., Burn, C. R., Duguay, C., Kushner, P., Langlois, A., Lewkowicz, A.G., Royer, A., and Walker, A.: Variability and Change in the Canadian Cryosphere, Clim. Change, 115, 59–88, https://doi.org/10.1007/s10584-012-0470-0, 2012.
Derksen, C., Burgess, D., Duguay, C., Howell, S., Mudryk, L., Smith, S.,
Thackeray, C., and Kirchmeier-Young, M.: Changes in snow, ice, and permafrost
across Canada, Chapter 5, in: Canada's Changing Climate Report, edited by: Bush, E.
and Lemmen, D. S., Government of Canada, Ottawa, Ontario, 194–260, 2019.
Druckenmiller, M. L. and Richter-Menge, J.: Overview, in: State of the
Climate in 2019, B. Am. Meteorol. Soc., 101, S245–S246, https://doi.org/10.1175/BAMS-D-20-0086.1, 2020.
Du, J., Kimball, J. S., Duguay, C., Kim, Y., and Watts, J. D.: Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015, The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, 2017.
Duguay, C. and Brown, L.: Lake Ice, in: Arctic Report Card 2018,
available at: https://arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/785/Lake-Ice (last access: 4 October 2021),
2018.
Duguay, C., Brown, L., Kang, K., and Kheyrollah Pour, H.: [The Arctic] Lake
Ice, in: State of the Climate 2011, B. Am. Meteorol. Soc., 93,
S138–S140, https://doi.org/10.1175/2012BAMSStateoftheClimate.1, 2012.
Duguay, C., Brown, L., Kang, K.-K., and Kheyrollah Pour, H.: [The Arctic] Lake
ice, in: State of the Climate in 2012, B. Am. Meteorol. Soc., 94,
S124–S126, https://doi.org/10.1175/2013BAMSStateoftheClimate.1, 2013.
Duguay, C., Brown, L., Kang, K.-K., and Kheyrollah Pour, H.: [The Arctic]
Lake ice, in: State of the Climate in 2013, B. Am. Meteorol. Soc., 95, 138, https://doi.org/10.1175/2014BAMSStateoftheClimate.1, 2014.
Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P., and
Ménard, P.: Recent trends in Canadian lake ice cover, Hydrol.
Process., 20, 781–801, 2006.
Duguay, C., Brown, L., Kang, K.-K., and Kheyrollah Pour, H.: [The Arctic]
Lake ice, in: State of the Climate in 2014, B. Am. Meteorol. Soc., 96, S144–S145, https://doi.org/10.1175/2015BAMSStateoftheClimate.1, 2015.
Filatov, N., Baklagin, V., Efremova, T., Nazarova, L., and Palshin, N.:
Climate change impacts on the watersheds of Lakes Onego and Ladoga from
remote sensing and in situ data, Inland Waters, 9, 130–141, https://doi.org/10.1080/20442041.2018.1533355, 2019.
Foster, J. L., Sun, C., Walker, J. P., Kelly, R., Chang, A., Dong, J., and
Powell, H.: Quantifying the uncertainty in passive microwave snow water
equivalent observations, Remote Sens. Environ., 94, 187–203,
https://doi.org/10.1016/j.rse.2004.09.012, 2005.
Frei, A. and Lee, S.: A comparison of optical-band based snow extent
products during spring over North America, Remote Sens. Environ., 114,
1940–1948, 2010.
Galley, R. J., Babb, D., Ogi, M., Else, B. G. T., Geilfus, N.-X., Crabeck, O., Barber, D. G., and Rysgaard, S.: Replacement of multiyear sea ice and changes in
the open water season duration in the Beaufort Sea since 2004, J. Geophys.
Res. Lett., 121, 1806–1823, https://doi.org/10.1002/2015JC011583, 2016.
Ghatak, D., Frei A., Gong, G., Stroeve, J., and Robinson, D.: On the
emergence of an Arctic amplification signal in terrestrial Arctic snow
extent, J. Geophys. Res., 115, D24105, https://doi.org/10.1029/2010JD014007, 2010.
Ghatak, D., Deser C., Frei, A., Gong, G., Phillips, A., Robinson, D. A., and
Stroeve, J.: Simulated Siberian snow cover response to observed Arctic sea
ice loss, 1979–2008, J. Geophys. Res., 117, D23108,
https://doi.org/10.1029/2012JD018047, 2012.
Graham, R. M., Hudson, S. R., and Maturilli, M.: Improved performance of
ERA5 in Arctic gateway relative to four global atmospheric reanalyses,
Geophys. Res. Lett., 46, 6138–6147,
https://doi.org/10.1029/2019GL082781, 2019.
Hauke, J. and Kossowski, T.: Comparison of values of Pearson's and
Spearman's correlation coefficients on the same sets of data, Quaestiones
Geographicae, 30, 87–93, https://doi.org/10.2478/v10117-011-0021-1, 2011.
Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T., and Kasheta, T.:
Enhancements to, and forthcoming developments in the Interactive Multisensor
Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576–1586, https://doi.org/10.1002/hyp.6720, 2007.
Hernandez-Henriquez, M. A., Déry, S. J., and Derksen, C.: Polar
amplification and elevation-dependence in trends of Northern Hemisphere snow
cover extent, 1971–2014, Environ. Res. Lett., 10, 044010, https://doi.org/10.1088/1748-9326/10/4/044010, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J.
Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Howell, S. E. and Brady, M.: The dynamic response of sea ice to warming in
the Canadian Arctic Archipelago, Geophys. Res. Lett., 46, 13119–13125, https://doi.org/10.1029/2019GL085116, 2019.
Howell, S. E., Tivy, A., Yackel, J. J., and Scharien, R. K.: Application of
a SeaWinds/QuikSCAT sea ice melt algorithm for assessing melt dynamics in
the Canadian Arctic Archipelago, J. Geophys. Res., 111, C07025,
https://doi.org/10.1029/2005JC003193, 2006.
Howell, S. E., Duguay, C. R., and Markus, T.: Sea ice conditions and melt
season duration variability within the Canadian Arctic Archipelago:
1979–2008, Geophys. Res. Lett., 36, L10502, https://doi.org/10.1029/2009GL037681, 2009.
Howell, S. E. L, Small, D., Rohner, C., Mahmud, M. S., Yackel, J. J., and Brady, M.: Estimating melt onset over Arctic sea ice from time series multi-sensor Sentinel-1 and RADARSAT-2 backscatter, Remote Sens. Environ., 229, 48–59, https://doi.org/10.1016/j.rse.2019.04.031, 2019.
Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P., and Miles, M. W.: Surface air
temperature variability and trends in the Arctic: new amplification
assessment and regionalisation, Tellus A, 68, 28234, https://doi.org/10.3402/tellusa.v68.28234, 2016.
Johnson, M. and Eicken, H.: Estimating Arctic sea-ice freeze-up and
break-up from the satellite record: A comparison of different approaches in
the Chukchi and Beaufort Seas, Elem. Sci. Anth., 4, https://doi.org/10.12952/journal.elementa.000124, 2016.
Karetnikov, S., Leppäranta, M., and Montonen, A.: A time series of over
100 years of ice seasons on Lake Ladoga, J. Great Lakes Res., 43,
979–988, https://doi.org/10.1016/j.jglr.2017.08.010, 2017.
Key, J. and Schweiger, A. J.: Tools for atmospheric radiative transfer: Streamer
and FluxNet, Comput. Geosci., 24, 443–451, 1998.
Key, J., Wang, X., Liu, Y., Dworak, R., and Letterly, A.: The AVHRR Polar Pathfinder Climate Data Records, Remote Sens.,, 8, 167, https://doi.org/10.3390/rs8030167, 2016.
Key, J., Wang, X., Liu, Y., and NOAA CDR Program: NOAA Climate Data Record
of AVHRR Polar Pathfinder Extended (APP-X), Version 2. 2004–2019, NOAA
National Centers for Environmental Information [data set], https://doi.org/10.25921/AE96-0E57, 2019.
Kondratyev, K. Ya. and Filatov, N.: Limnology and Remote Sensing: A
Contemporary Approach, Springer-Verlag, London, 406, 1999.
Kuusisto, E.: Trends of breakup dates in Finnish lakes in 1963–2014, in: 20th
International Northern Research Basins Symposium and Workshop Kuusamo,
Finland, 16–21 August 2015, 35, 2015.
Lehnherr, I., Louis, V. L. S., Sharp, M., Gardner, A. S., Smol, J. P., Schiff,
S. L., Muir, D. C., Mortimer, C. A., Michelutti, N., Tarnocai, C., and Pierre,
K. A. S.: The world's largest High Arctic lake responds rapidly to climate
warming, Nat. Commun., 9, 1290, https://doi.org/10.1038/s41467-018-03685-z, 2018.
Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., and Zhang, T.: Observations: changes in snow, ice and frozen
ground, in: Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z.,
Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Ludwig, V., Spreen, G., Haas, C., Istomina, L., Kauker, F., and Murashkin, D.: The 2018 North Greenland polynya observed by a newly introduced merged optical and passive microwave sea-ice concentration dataset, The Cryosphere, 13, 2051–2073, https://doi.org/10.5194/tc-13-2051-2019, 2019.
Lynch, A. H., Serreze, M. C., Cassano, E. N., Crawford, A. D., and Stroeve,
J.: Linkages between Arctic summer circulation regimes and regional sea ice
anomalies, J. Geophys. Res., 121, 7868–7880, https://doi.org/10.1002/2016JD025164,
2016.
Mahmud, M. S., Howell, S. E., Geldsetzer, T., and Yackel, J.: Detection of
melt onset over the northern Canadian Arctic Archipelago sea ice from
RADARSAT, 1997–2014, Remote Sens. Environ., 178, 59–69, https://doi.org/10.1016/j.rse.2016.03.003, 2016.
Marshall, S., Scott, K. A., and Scharien, R. K.: Passive Microwave Melt
Onset Retrieval Based on a Variable Threshold: Assessment in the Canadian
Arctic Archipelago, Remote Sens., 11, 1304, https://doi.org/10.3390/rs11111304, 2019.
Meier, W.: Comparison of passive microwave ice concentration algorithm
retrievals with AVHRR imagery in arctic peripheral seas, IEEE T. Geosci. Remote, 43, 1324–1337,
https://doi.org/10.1109/TGRS.2005.846151, 2005.
Melling, H.: Sea ice of the northern Canadian Arctic Archipelago, J.
Geophys. Res., 107, 2–1, https://doi.org/10.1029/2001JC001102, 2002.
Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak, L.,
Serreze, M. C., and White, J. W. C.: Arctic amplification: can the past constrain
the future?, Quaternary Sci. Rev., 29, 1779–1790,
https://doi.org/10.1016/j.quascirev.2010.02.008, 2010.
Moore, G. W. K., Howell, S. E. L., Brady, M.,
Xu, X., and McNeil, K.: Anomalous collapses of
Nares Strait ice arches leads to enhanced export of Arctic sea ice, Nat.
Commun., 12, 1, https://doi.org/10.1038/s41467-020-20314-w, 2021.
Mortin, J., Howell, S. E., Wang, L., Derksen, C., Svensson, G., Graversen,
R. G., and Schrøder, T. M.: Extending the QuikSCAT record of seasonal
melt–freeze transitions over Arctic sea ice using ASCAT, Remote Sens.
Environ., 141, 214–230, https://doi.org/10.1016/j.rse.2013.11.004, 2014.
Mortin, J., Svensson, G., Graversen, R. G., Kapsch, M. L., Stroeve, J. C.,
and Boisvert, L. N.: Melt onset over Arctic sea ice controlled by
atmospheric moisture transport, Geophys. Res. Lett., 43, 6636–6642, https://doi.org/10.1002/2016GL069330, 2016.
Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown, R.: Characterization
of Northern Hemisphere Snow Water Equivalent Datasets, 1981–2010, J. Climate, 28, 8037–8051, https://doi.org/10.1175/JCLI-D-15-0229.1, 2015.
Mudryk, L. R., Derksen, C., Howell, S., Laliberté, F., Thackeray, C., Sospedra-Alfonso, R., Vionnet, V., Kushner, P. J., and Brown, R.: Canadian snow and sea ice: historical trends and projections, The Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-2018, 2018.
Murfitt, J. and Brown, L. C.: Lake Ice and Temperature Trends for Ontario and Manitoba: 2001 to 2014, Hydrol. Process., 31, 3596–3609, https://doi.org/10.1002/hyp.11295, 2017.
Nitze, I., Grosse, G., Jones, B. M., Arp, C. D., Ulrich, M., Fedorov, A.,
and Veremeeva, A.: Landsat-based trend analysis of lake dynamics across
northern permafrost regions, Remote Sens., 9, 640, https://doi.org/10.3390/rs9070640,
2017.
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.: Seasonal
and regional manifestation of Arctic sea ice loss, J. Climate, 31,
4917–4932, https://doi.org/10.1175/JCLI-D-17-0427.1, 2018.
Overland, J. E.: Less climatic resilience in the arctic Weather, Clim.
Extremes, 30, 100275, https://doi.org/10.1016/j.wace.2020.100275, 2020.
Park, H., Yabuki, H., and Ohata, T.: Analysis of satellite and model
datasets for variability and trends in Arctic snow extent and depth,
1948–2006, Polar Sci., 6, 23–37, https://doi.org/10.1016/j.polar.2011.11.002, 2012.
Perovich, D., Meier, W., Tschudi, M., Wood, K., Farrell, S., Hendricks, S., Gerland, S., Kaleschke, L., Ricker, R., Tian-Kunze, X., and Webster, M.: Sea ice, in: State of the Climate in
2019, B. Am. Meteorol. Soc., 101, S251–S256, https://doi.org/10.1175/BAMS-D-20-0086.1, 2020.
Pizzolato, L., Howell, S. E., Derksen, C., Dawson, J., and Copland, L.:
Changing sea ice conditions and marine transportation activity in Canadian
Arctic waters between 1990 and 2012, Clim. Change, 123, 161–173, https://doi.org/10.1007/s10584-013-1038-3, 2014.
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T., and Norberg, J.: Patterns and trends of
Northern Hemisphere snow mass from 1980 to 2018, Nature, 581, 294–298,
https://doi.org/10.1038/s41586-020-2258-0, 2020.
Rahmstorf, S.: A new view on sea level rise, Nat. Clim. Change, 4, 44–45,
https://doi.org/10.1038/climate.2010.29, 2010.
Ramsay, B. H.: The interactive multisensor snow and ice mapping system,
Hydrol. Process., 12, 1537–1546, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.0.CO;2-A, 1998.
Serreze, M. C. and Stroeve, J.: Arctic sea ice trends, variability and
implications for seasonal ice forecasting, Philos. T. R. Soc. A.,
373, 20140159, https://doi.org/10.1098/rsta.2014.0159, 2015.
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all Seasons,
Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56, 2018.
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.:
Changes in Arctic melt season and implications for sea ice loss, Geophys.
Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Stroeve, J. C., Crawford, A. D., and Stammerjohn, S: Using timing of ice retreat to predict timing of fall freeze‐up in the Arctic, Geophys. Res. Lett., 43, 6332–6340, https://doi.org/10.1002/2016GL069314, 2016.
Surdu, C. M., Duguay, C. R., Brown, L. C., and Fernández Prieto, D.: Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis, The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014, 2014.
Surdu, C. M., Duguay, C. R., and Fernández Prieto, D.: Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations, The Cryosphere, 10, 941–960, https://doi.org/10.5194/tc-10-941-2016, 2016.
Tedesco, M., Derksen, C., Deems, J. S., and Foster, J. L: Remote sensing of
the cryosphere: Remote sensing of snow depth and snow water equivalent: 1st
edn., John Wiley & Sons, Ltd, UK, https://doi.org/10.1002/9781118368909.ch5, 2015.
Thackeray, C. W., Derksen, C., Fletcher, C. G., and Hall, A.: Snow and
climate: Feedbacks, drivers, and indices of change, Curr. Clim. Change Rep.,
5, 322–333, https://doi.org/10.1007/s40641-019-00143-w, 2019.
Thoman, R. L., Bhatt, U. S., Bieniek, P. A., Brettschneider, B. R., Brubaker, M., Danielson, S. L., Labe, Z., Lader, R., Meier, W. N., Sheffield, G., and Walsh, J. E.: The record low Bering Sea ice
extent in 2018, in: Context, impacts, and an assessment of the role of
anthropogenic climate change in Explaining extreme events of 2018 from a
climate perspective, B. Am. Meteorol. Soc. 101, 53–59, https://doi.org/10.1175/BAMS-D-19-0175.1, 2020.
U.S. National Ice Center: IMS Daily Northern Hemisphere
Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1, 2
& 3, 1998–2019. Boulder, Colorado USA, NSIDC: National Snow and Ice Data
Center [data set], https://doi.org/10.7265/N52R3PMC (last access: May 2021), 2008, updated daily.
Vincent, L. A., Zhang, X., Brown, R. D., Feng, Y., Mekis, E., Milewska, E. J.,
Wan, H., and Wang, X. L.: Observed trends in Canada's climate and influence of
low-frequency variability modes, J. Climate, 28, 4545–4560, https://doi.org/10.1175/JCLI-D-14-00697.1, 2015.
Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution, The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019.
Wang, L., Wolken, G. J., Sharp, M. J., Howell, S. E. L., Derksen, C., Brown,
R. D., Markus, T., and Cole, J.: Integrated pan-Arctic melt onset detection
from satellite active and passive microwave measurements, 2000–2009, J.
Geophys. Res., 116, D22103, https://doi.org/10.1029/2011JD016256, 2011.
Wendler, G., Gordon, T., and Stuefer, M.: On the precipitation and
precipitation change in Alaska, Atmosphere, 8, 253, https://doi.org/10.3390/atmos8120253, 2017.
Yackel, J. J., Barber, D. G., Papakyriakou, T. N., and Breneman, C.: First-year
sea ice spring melt transitions in the Canadian Arctic Archipelago from
time-series synthetic aperture radar data, 1992–2002, Hydrol. Process., 21,
253–265, 2007.
Yeo, S. R., Kim, W., and Kim, K. Y.: Eurasian snow cover variability in relation
to warming trend and Arctic Oscillation, Clim. Dynam., 48, 499–511,
https://doi.org/10.1007/s00382-016-3089-4, 2017.
Young, K. L., Brown, L., and Labine, C.: Snow cover variability at Polar Bear
Pass, Nunavut, Arct. Sci., 4, 669–690, https://doi.org/10.1139/as-2017-0016,
2018.
Zhang, X., Vincent, L. A., Hogg, W. D., and Niitsoo, A.: Temperature and precipitation trends in Canada during the 20th century, Atmos.-Ocean, 38, 395–429, https://doi.org/10.1080/07055900.2000.9649654, 2000.
Zheng, J., Geldsetzer, T., and Yackel, J.: Snow thickness estimation on
first-year sea ice using microwave and optical remote sensing with melt
modelling, Remote Sens. Environ., 199, 321–332, https://doi.org/10.1016/j.rse.2017.06.038, 2017.
Zhu, J., Tan, S., King, J., Derksen, C., Lemmetyinen, J., and Tsang, L.:
Forward and inverse radar modeling of terrestrial snow using SnowSAR data,
IEEE Geosci. Remote, 56, 7122–7132, https://doi.org/10.1109/TGRS.2018.2848642, 2018.
Short summary
This work examines changes in the timing (on/off dates) of Arctic snow, lake ice, and sea ice to investigate how they have responded to recent climate change and determine if they are responding similarly. We looked at pan-Arctic trends since 1997 and regional trends since 2004 using (mainly) satellite data. Strong regional variability was shown in the snow and ice trends, which highlights the need for a detailed understanding of the regional response to ongoing changes in the Arctic climate.
This work examines changes in the timing (on/off dates) of Arctic snow, lake ice, and sea ice to...