Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4589-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4589-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of grain size evolution in the rheology of ice: implications for reconciling laboratory creep data and the Glen flow law
Dept. Earth & Environmental Sciences, Boston College, Chestnut
Hill, MA 02467, USA
David L. Goldsby
Dept. Earth & Environmental Science, University of Pennsylvania,
Philadelphia, PA 19104, USA
Greg Hirth
Dept. Earth, Environmental & Planetary Sciences, Brown University, Providence, RI 02912, USA
Related authors
No articles found.
Sheng Fan, David J. Prior, Brent Pooley, Hamish Bowman, Lucy Davidson, David Wallis, Sandra Piazolo, Chao Qi, David L. Goldsby, and Travis F. Hager
The Cryosphere, 17, 3443–3459, https://doi.org/10.5194/tc-17-3443-2023, https://doi.org/10.5194/tc-17-3443-2023, 2023
Short summary
Short summary
The microstructure of ice controls the behaviour of polar ice flow. Grain growth can modify the microstructure of ice; however, its processes and kinetics are poorly understood. We conduct grain-growth experiments on synthetic and natural ice samples at 0 °C. Microstructural data show synthetic ice grows continuously with time. In contrast, natural ice does not grow within a month. The inhibition of grain growth in natural ice is largely contributed by bubble pinning at ice grain boundaries.
Sheng Fan, Travis F. Hager, David J. Prior, Andrew J. Cross, David L. Goldsby, Chao Qi, Marianne Negrini, and John Wheeler
The Cryosphere, 14, 3875–3905, https://doi.org/10.5194/tc-14-3875-2020, https://doi.org/10.5194/tc-14-3875-2020, 2020
Short summary
Short summary
We performed uniaxial compression experiments on synthetic ice samples. We report ice microstructural evolution at –20 and –30 °C that has never been reported before. Microstructural data show the opening angle of c-axis cones decreases with increasing strain or with decreasing temperature, suggesting a more active grain rotation. CPO intensity weakens with temperature because CPO of small grains is weaker, and it can be explained by grain boundary sliding or nucleation with random orientations.
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, https://doi.org/10.5194/tc-13-351-2019, 2019
Short summary
Short summary
Ice deformed in nature develops crystallographic preferred orientations, CPOs, which induce an anisotropy in ice viscosity. Shear experiments of ice revealed a transition in CPO with changing temperature/strain, which is due to the change of dominant CPO-formation mechanism: strain-induced grain boundary migration dominates at higher temperatures and lower strains, while lattice rotation dominates at other conditions. Understanding these mechanisms aids the interpretation of CPOs in natural ice.
Related subject area
Discipline: Ice sheets | Subject: Rheology
Grain growth of ice doped with soluble impurities
Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at −10, −20 and −30 °C
Qinyu Wang, Sheng Fan, and Chao Qi
The Cryosphere, 18, 1053–1084, https://doi.org/10.5194/tc-18-1053-2024, https://doi.org/10.5194/tc-18-1053-2024, 2024
Short summary
Short summary
We explored how the grain size of polycrystalline ice is affected by soluble impurities by conducting experiments on ice-containing salts. Results showed that above/below the eutectic point, impurities enhance/hinder grain growth, due to production of melts/precipitation of salt hydrates. Our findings offer insights into the dynamics of natural ice masses.
Sheng Fan, Travis F. Hager, David J. Prior, Andrew J. Cross, David L. Goldsby, Chao Qi, Marianne Negrini, and John Wheeler
The Cryosphere, 14, 3875–3905, https://doi.org/10.5194/tc-14-3875-2020, https://doi.org/10.5194/tc-14-3875-2020, 2020
Short summary
Short summary
We performed uniaxial compression experiments on synthetic ice samples. We report ice microstructural evolution at –20 and –30 °C that has never been reported before. Microstructural data show the opening angle of c-axis cones decreases with increasing strain or with decreasing temperature, suggesting a more active grain rotation. CPO intensity weakens with temperature because CPO of small grains is weaker, and it can be explained by grain boundary sliding or nucleation with random orientations.
Cited articles
Alley, R.: Flow-law hypotheses for ice-sheet modeling, J. Glaciol., 38,
245–256, https://doi.org/10.3189/S0022143000003658, 1992.
Alley, R., Perepezko, H., and Bentley, C.: Grain growth in polar ice: 1.
Theory, J. Glaciol., 32, 415–424, https://doi.org/10.3189/S0022143000012120, 1986.
Alley, R. B.: Fabrics in Polar Ice Sheets: Development and Prediction,
Science, 240, 493–495, https://doi.org/10.1126/science.240.4851.493,
1988.
Alley, R. B. and Woods, G. A.: Impurity influence on normal grain growth in
the GISP2 ice core, Greenland, J. Glaciol., 42, 255–260,
https://doi.org/10.3189/S0022143000004111, 1996.
Alley, R. B., Gow, A. J., and Meese, D. A.: Instruments and Methods Mapping
c-axis fabrics to study physical processes in ice, J. Glaciol., 41,
197–203, https://doi.org/10.1017/S0022143000017895, 1995.
Arena, L., Nasello, O. B., and Levi, L.: Effect of Bubbles on Grain Growth in
Ice, J. Phys. Chem. B, 101, 6109–6112, 1997.
Austin, N. and Evans, B.: The kinetics of microstructural evolution during
deformation of calcite, J. Geophys. Res., 114, B09402, https://doi.org/10.1029/2008JB006138, 2009.
Austin, N. J. and Evans, B.: Paleowattmeters: A scaling relation for
dynamically recrystallized grain size, Geol., 35, 343, https://doi.org/10.1130/G23244A.1, 2007.
Azuma, N. and Higashi, A.: Effects of the hydrostatic pressure on the rate
of grain growth in Antarctic polycrystalline ice, J. Phys. Chem., 87,
4060–4064, https://doi.org/10.1021/j100244a012, 1983.
Azuma, N., Miyakoshi, T., Yokoyama, S., and Takata, M.: Impeding effect of
air bubbles on normal grain growth of ice, J. Struc. Geol., 42, 184–193,
https://doi.org/10.1016/j.jsg.2012.05.005, 2012.
Barnes, P., Tabor, D., and Walker, J. C. F.: The Friction and Creep of
Polycrystalline Ice, P. Roy. Soc. Lond. A Mat., 324, 127–155, https://doi.org/10.1098/rspa.1971.0132, 1971.
Barr, A. C. and McKinnon, W. B.: Convection in ice I shells and mantles with
self-consistent grain size, J. Geophys. Res., 112, E02012,
https://doi.org/10.1029/2006JE002781, 2007.
Bercovici, D. and Ricard, Y.: Mechanisms for the generation of plate
tectonics by two-phase grain-damage and pinning, Phys. Earth Planet. Int.,
202–203, 27–55, https://doi.org/10.1016/j.pepi.2012.05.003, 2012.
Bercovici, D. and Ricard, Y.: Plate tectonics, damage and inheritance,
Nature, 508, 513–516, https://doi.org/10.1038/nature13072, 2014.
Bons, P. D., Jessell, Mark. W., Evans, L., Barr, T., and Stüwe, K.:
Modeling of anisotropic grain growth in minerals, in: Tectonic Modeling: A
Volume in Honor of Hans Ramberg, Geological Society of America, Boulder, Colorado, 2001.
Budd, W. F. and Jacka, T. H.: A review of ice rheology for ice sheet modelling, Cold Reg. Sci. Technol., 16, 107–144, 1989.
Caswell, T. E. and Cooper, R. F.: Grain size evolution in icy satellites, New experimental constraints, Lunar Planet. Sci. Conf., 47, p. 2000, The Woodlands, Texas, 20–24 March 2017.
Clow, G. D., Saltus, R. W., and Waddington, E. D.: High-precision temperature logging at GISP2, Greenland, May 1992, U.S. Geological Survey Open File Report 95-490, 1995.
Clow, G. D., Saltus, R. W., and Waddington, E. D.: A new high-precision borehole-temperature logging system used at GISP2, Greenland, and Taylor Dome, Antarctica, J. Glaciol., 42, 576–584, 1996.
Cuffey, K. M.: Manifestations of Ice Microphysical Processes at the Scale of
Whole Ice Sheets, in: Glacier Science and Environmental Change, edited by: Knight, P. G., Blackwell Publishing, Malden, MA, USA, 2006.
Cuffey, K. M. and Kavanaugh, J. L.: How nonlinear is the creep deformation of polar ice? A new field assessment, Geology, 39, 1027–1030, 2011.
Cuffey, K. M. and Paterson, W. S. B.: Physics of Glaciers, 4th edn.,
Elsevier, Amsterdam, the Netherlands, 2010.
Cuffey, K. M., Thorsteinsson, T., and Waddington, E. D.: A renewed argument
for crystal size control of ice sheet strain rates, J. Geophys. Res.,
105, 27889–27894, https://doi.org/10.1029/2000JB900270, 2000.
Dahl-Jensen, D. and Gundestrup, N. S.: Constitutive properties of ice at Dye 3, Greenland, in: The Physical Basis of Ice Sheet Modelling (Proceedings of the Vancouver Symposium, August 1987), IAHS Publ. no. 170, Washington, DC, USA, 31–43, 1987
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P.,
Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general
instability of past climate from a 250-kyr ice-core record, Nature,
364, 218–220, https://doi.org/10.1038/364218a0, 1993.
de Bresser, J., Ter Heege, J., and Spiers, C.: Grain size reduction by
dynamic recrystallization: can it result in major rheological weakening?,
Int. J. Earth Sci., 90, 28–45, https://doi.org/10.1007/s005310000149,
2001.
De La Chapelle, S., Castelnau, O., Lipenkov, V., and Duval, P.: Dynamic
recrystallization and texture development in ice as revealed by the study of
deep ice cores in Antarctica and Greenland, J. Geophys. Res., 103,
5091–5105, https://doi.org/10.1029/97JB02621, 1998.
Durand, G., Weiss, J., Lipenkov, V., Barnola, J., Krinner, G., Parrenin, F.,
Delmonte, B., Ritz, C., Duval, P., and Röthlisberger, R.: Effect of
impurities on grain growth in cold ice sheets, J. Geophys. Res., 111,
F01015, https://doi.org/10.1029/2005JF000320, 2006.
Durham, W. and Stern, L.: Rheological Properties of Water Ice – Applications
to Satellites of the Outer Planets, Annu. Rev. Earth Planet. Sci., 29,
295–330, https://doi.org/10.1146/annurev.earth.29.1.295, 2001.
Durham, W. B., Stern, L. A., and Kirby, S. H.: Rheology of ice I at low
stress and elevated confining pressure, J. Geophys. Res., 106,
11031–11042, https://doi.org/10.1029/2000JB900446, 2001.
Duval, P. and Castelnau, O.: Dynamic Recrystallization of Ice in Polar Ice
Sheets, J. Phys. IV, 05, C3-197–C3-205, https://doi.org/10.1051/jp4:1995317, 1995.
Duval, P. and Lorius, C.: Crystal size and climatic record down to the last
ice age from Antarctic ice, Earth Planet. Sci. Lett., 48, 59–64,
https://doi.org/10.1016/0012-821X(80)90170-3, 1980.
Duval, P., Ashby, M. F., and Andermant, I.: Rate-controlling processes in
the creep of polycrystalline ice, J. Phys. Chem., 87, 4066–4074,
https://doi.org/10.1021/j100244a014, 1983.
Echelmeyer, K. A., Harrison, W. D., Larsen, C., and Mitchell, J. E.: The role
of the margins in the dynamics of an active ice stream, J. Glaciol.,
40, 527–538, https://doi.org/10.3189/S0022143000012417, 1994.
Evans, B., Renner, J., and Hirth, G.: A few remarks on the kinetics of static
grain growth in rocks, Int. J. Earth Sci., 90, 88–103, https://doi.org/10.1007/s005310000150, 2001.
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part I: Highlights from ice core research, J. Struc. Geol., 61, 2–20,
https://doi.org/10.1016/j.jsg.2013.09.010, 2014a.
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part II: State of the art, J. Struc. Geol., 61, 21–49, https://doi.org/10.1016/j.jsg.2013.11.003, 2014b.
Fisher, D. A. and Koerner, R. M.: On the special rheological properties of
ancient microparticle-laden northern hemisphere ice as derived from
bore-hole and core measurements, J. Glaciol., 32, 501–510, https://doi.org/10.3189/S0022143000012211, 1986.
Gifkens, R. C.: Optical Microscopy of Metals, American Elsevier, New York, USA, 208 pp., 1970.
Glen, J. W.: Experiments on the Deformation of Ice, J. Glaciol., 2, 111–114, https://doi.org/10.3189/S0022143000034067, 1952.
Glen, J. W.: The creep of polycrystalline ice, Proceedings of the Royal
Academy of London Series A, 228, 519–538, https://doi.org/10.1098/rspa.1955.0066, 1955.
Goldsby, D. L.: Superplastic Flow of Ice Relevant to Glacier and Ice-Sheet
Mechanics, in: Glacier Science and Environmental Change, edited by:
Knight, P. G., Blackwell Publishing, Malden, MA, USA, 308–314, 2006.
Goldsby, D. L. and Kohlstedt, D.: Superplasticdeformation of ice:
Experimental observations, J. Geophys. Res., 106, 11017–11030,
https://doi.org/10.1029/2000JB900336, 2001.
Gow, A. J.: On the rate of growth of grains and crystals in south polar firn,
J. Glaciol., 8, 241–252, 1969.
Gow, A. J. and Williamson, T.: Rheological implications of the internal
structure and crystal fabrics of the West Antarctic ice sheet as revealed by
deep core drilling at Byrd Station, GSA Bull., 87, 1665–1677,
https://doi.org/10.1130/0016-7606(1976)87<1665:RIOTIS>2.0.CO;2, 1976.
Gow, A. J., Meese, D. A., Alley, R. B., Fitzpatrick, J. J., Anandakrishnan,
S., Woods, G. A., and Elder, B. C.: Physical and structural properties of the
Greenland Ice Sheet Project 2 ice core: A review, J. Geophys. Res.,
102, 26559–26575, https://doi.org/10.1029/97JC00165, 1997.
GRIP/GISP; GRIP Members: Greenland Summit Ice Cores CD-ROM as zip-archive, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.870454, 2017.
Hall, C. E. and Parmentier, E. M.: Influence of grain size evolution on
convective instability, Geochem. Geophys. Geosys., 4, 1029, https://doi.org/10.1029/2002GC000308, 2003.
Hamann, I., Weikusat, C., Azuma, N., and Kipfstuhl, S.: Evolution of ice
crystal microstructure during creep experiments, J. Glaciol., 53,
479–489, https://doi.org/10.3189/002214307783258341, 2007.
Hamley, T. C., Smith, I. N., and Young, N. W.: Mass–Balance and
Ice–Flow–Law Parameters for East Antarctica, J. Glaciol., 31,
334–339, https://doi.org/10.3189/S0022143000006675, 1985.
Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: The influence of
microstructure on deformation of olivine in the grain-boundary sliding
regime, J. Geophys. Res., 117, B09201, https://doi.org/10.1029/2012JB009305,
2012.
Harrison, W. D., Echelmeyer, K. A., and Larsen, C. F.: Measurement of
temperature in a margin of Ice Stream B, Antarctica: implications for margin
migration and lateral drag, J. Glaciol., 44, 615–624, https://doi.org/10.3189/S0022143000002112, 1998.
Herron, M. M. and Langway, C. C. J.: Chloride, nitrate, and sulfate in the
Dye 3 and Camp Century, Greenland ice cores, Geophys. Monog. Ser.,
33, 77–84, https://doi.org/10.1029/GM033p0077, 1985.
Herron, S. L., Langway, C. C., and Brugger, K. A.: Ultrasonic velocities and
crystalline anisotropy in the ice core from Dye 3, Greenland, in: Geophysical
Monograph Series, edited by: Langway, C. C., Oeschger, H., and Dansgaard, W., American Geophysical Union, Washington, DC, USA, vol. 33, 23–31, 1985.
Holtzman, B. K., Chrysochoos, A., and Daridon, L.: A thermodynamical
framework for analysis of microstructural evolution: Application to olivine
rocks at high temperature, J. Geophys. Res.-Sol. Ea., 123,
8474–8507, https://doi.org/10.1029/2018JB015613, 2018.
Hvidberg, C. S., Dahl-Jensen, D., and Waddington, E. D.: Ice flow between the
Greenland Ice Core Project and Greenland Ice Sheet Project 2 boreholes in
central Greenland, J. Geophys. Res., 102, 26851–26859,
https://doi.org/10.1029/97JC00268, 1997.
Iken, A., Echelmeyer, K., Harrison, W., and Funk, M.: Mechanisms of fast flow
in Jakobshavns Isbræ, West Greenland. I: Measurements of temperature and
water level in deep boreholes, J. Glaciol., 39, 15–25, https://doi.org/10.3189/S0022143000015689, 1993.
Jacka, T. H. and Li, J.: The steady-state crystal size of deforming ice,
Ann. Glaciol., 20, 13–18, https://doi.org/10.3189/1994AoG20-1-13-18, 1994.
Jackson, M. and Kamb, B.: The marginal shear stress of Ice Stream B, West
Antarctica, J. Glaciol., 43, 415–426, https://doi.org/10.3189/S0022143000035000, 1997.
Jezek, K. C., Alley, R. B., and Thomas, R. H.: Rheology of glacier ice,
Science, 227, 1335–1338, https://doi.org/10.1126/science.227.4692.1335,
1985.
Karato, S.-I.: Grain growth kinetics in olivine aggregates, Tectonophys.,
168, 255–273, https://doi.org/10.1016/0040-1951(89)90221-7, 1989.
Karato, S.-I., Paterson, M. S., and FitzGerald, J. D.: Rheology of synthetic
olivine aggregates: Influence of grain size and water, J. Geophys. Res.,
91, 8151–8176, https://doi.org/10.1029/JB091iB08p08151, 1986.
Kipfstuhl, S., Hamann, I., Lambrecht, A., Freitag, J., Faria, S. H.,
Grigoriev, D., and Azuma, N.: Microstructure mapping: a new method for
imaging deformation-induced microstructural features of ice on the grain
scale, J. Glaciol., 52, 398–406, https://doi.org/10.3189/172756506781828647, 2006.
Kipfstuhl, S., Faria, S. H., Azuma, N., Freitag, J., Hamann, I., Kaufmann,
P., Miller, H., Weiler, K., and Wilhelms, F.: Evidence of dynamic
recrystallization in polar firn, J. Geophys. Res., 114, B05204,
https://doi.org/10.1029/2008JB005583, 2009.
Kuiper, E.-J. N., Weikusat, I., de Bresser, J. H. P., Jansen, D., Pennock, G. M., and Drury, M. R.: Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 1: The role of grain size and grain size distribution on deformation of the upper 2207 m, The Cryosphere, 14, 2429–2448, https://doi.org/10.5194/tc-14-2429-2020, 2020.
Langdon, T. G.: A unified approach to grain boundary sliding in creep and
superplasticity, Acta Metall. Mater., 42, 2437–2443,
https://doi.org/10.1016/0956-7151(94)90322-0, 1994.
Li, J., Jacka, T. H., and Morgan, V.: Crystal-size and microparticle record
in the ice core from Dome Summit South, Law Dome, East Antarctica, Ann.
Glaciol., 27, 343–348, https://doi.org/10.3189/1998AoG27-1-343-348, 1998.
Lüthi, M., Funk, M., Iken, A., Gogineni, S., and Truffer, M.: Mechanisms
of fast flow in Jakobshavn Isbræ, West Greenland: Part III. Measurements
of ice deformation, temperature and cross-borehole conductivity in boreholes
to the bedrock, J. Glaciol., 48, 369–385, https://doi.org/10.3189/172756502781831322, 2002.
Martin, P. J. and Sanderson, T. J. O.: Morphology and Dynamics of Ice Rises,
J. Glaciol., 25, 33–46, https://doi.org/10.3189/S0022143000010261,
1980.
Mellor, M. and Smith, J. H.: Creep of snow and ice, CRREL Res. Rep., 220, 13 pp., 1966.
Montagnat, M. and Duval, P.: Rate controlling processes in the creep of
polar ice, influence of grain boundary migration associated with
recrystallization, Lithos, 183, 179–186, https://doi.org/10.1016/S0012-821X(00)00262-4, 2000.
Montagnat, M. and Duval, P.: The viscoplastic behaviour of ice in polar ice
sheets: experimental results and modelling, C. R. Phys., 5,
699–708, https://doi.org/10.1016/j.crhy.2004.06.002, 2004.
Montési, L. G. J., and Hirth, G.: Grain size evolution and the rheology
of ductile shear zones: from laboratory experiments to postseismic creep,
Earth Planet. Sci. Lett., 211, 97–110, https://doi.org/10.1016/S0012-821X(03)00196-1, 2003.
Ng, F. and Jacka, T. H.: A model of crystal-size evolution in polar ice
masses, J. Glaciol., 60, 463–477, https://doi.org/10.3189/2014JoG13J173, 2017.
Nieh, T. G., Wadsworth, J., and Sherby, O. D.: Superplasticity in Metals and
Ceramics, 1st edn., Cambridge University Press, New York, USA, 1997.
Paterson, W. S. B.: Deformation within polar ice sheets: An analysis of the
Byrd Station and Camp Century borehole-tilting measurements, Cold Reg. Sci.
Tech., 8, 165–179, https://doi.org/10.1016/0165-232X(83)90007-1, 1983.
Peltier, W. R., Goldsby, D. L., Kohlstedt, D. L., and Tarasov, L.: Ice-age
ice-sheet rheology: constraints from the Last Glacial Maximum form of the
Laurentide ice sheet, Ann. Glaciol., 30, 163–176, https://doi.org/10.3189/172756400781820859, 2000.
Perol, T. and Rice, J. R.: Shear heating and weakening of the margins of
West Antarctic ice streams, Geophys. Res. Lett., 42, 3406–3413,
https://doi.org/10.1002/2015GL063638, 2015.
Piazolo, S., Wilson, C. J. L., Luzin, V., Brouzet, C., and Peternell, M.:
Dynamics of ice mass deformation: Linking processes to rheology, texture,
and microstructure, Geochem. Geophys. Geosys., 14, 4185–4194,
https://doi.org/10.1002/ggge.20246, 2013.
Pimienta, P., Duval, P., and Lipenkov, V.: Mechanical behavior of anisotropic polar ice, in: The Physical Basis of Ice Sheet Modelling (Proceedings of the Vancouver Symposium, August 1987), IAHS Publ. no. 170, Washington, DC, USA, 57–66, 1987.
Poirier, J.-P.: Creep of Crystals: High-Temperature Deformation Processes in
Metals, Ceramics and Minerals, 1st edn., Cambridge University Press, New York, USA, 1985.
Ram, M., Donarummo, J., Stolz, M. R., and Koenig, G.: Calibration of
laser-light scattering measurements of dust concentration for Wisconsinan
GISP2 ice using instrumental neutron activation analysis of aluminum:
Results and discussion, J. Geophys. Res., 105, 24731–24738,
https://doi.org/10.1029/2000JD900321, 2000.
Raymond, C. F.: Inversion of flow Measurements for Stress and Rheological
Parameters in a Valley Glacier, J. Glaciol., 12, 19–44, https://doi.org/10.1017/S0022143000022681, 1973.
Raymond, C. F.: Temperate Valley Glaciers, in: Dynamics of Snow and Ice Masses, Academic Press Inc., New York, USA, 79–139, 1980.
Roessiger, J., Bons, P. D., Griera, A., Jessell, M. W., Evans, L.,
Montagnat, M., Kipfstuhl, S., Faria, S. H., and Weikusat, I.: Competition
between grain growth and grain-size reduction in polar ice, J. Glaciol.,
57, 942–948, https://doi.org/10.3189/002214311798043690, 2011.
Roessiger, J., Bons, P. D., and Faria, S. H.: Influence of bubbles on grain growth in ice, J. Struct. Geol., 61, 123–132, 2014.
Ryser, C., Lüthi, M. P., Andrews, L. C., Hoffman, M. J., Catania, G. A.,
Hawley, R. L., Neumann, T. A., and Kristensen, S. S.: Sustained high basal
motion of the Greenland ice sheet revealed by borehole deformation, J.
Glaciol., 60, 647–660, https://doi.org/10.3189/2014JoG13J196, 2014.
Shoji, H. and Langway, C. C.: Flow-Law Parameters of the Dye 3, Greenland,
Deep Ice Core, Ann. Glaciol., 10, 146–150, https://doi.org/10.3189/S026030550000433X, 1988.
Steinemann, S.: Experimentelle Untersuchungen zur Plastizität von
Eis, Application/pdf, ETH Zurich, https://doi.org/10.3929/ETHZ-A-000096707, 1958.
Suckale, J., Platt, J. D., Perol, T., and Rice, J. R.: Deformation‐induced melting in the margins of the West Antarctic ice streams, J. Geophys. Res.-Earth, 119, 1004–1025, 2014.
Thomas, R. H.: The Creep of Ice Shelves: Interpretation of Observed
Behaviour, J. Glaciol., 12, 55–70,
https://doi.org/10.1017/S002214300002270X, 1973.
Thorsteinsson, T., Kipfstuhl, J., and Miller, H.: Textures and fabrics in the
GRIP ice core, J. Geophys. Res., 102, 26583–26599, https://doi.org/10.1029/97JC00161, 1997.
Tokle, L. and Hirth, G.: Assessment of quartz grain growth and the
application of the wattmeter to predict recrystallized grain sizes, J.
Geophys. Res., 126, e2020JB021475, https://doi.org/10.1029/2020JB021475, 2021.
Weertman, J.: Creep deformation of ice, Ann. Rev. Earth Planet. Sci., 11, 215–240,
https://doi.org/10.1146/annurev.ea.11.050183.001243, 1983.
Young, N. W., Goodwin, I. D., and Hazelton, N.: Measured velocities and ice
flow in Wilkes Land, Antarctica, Ann. Glaciol., 12, 192–197, https://doi.org/10.3189/S0260305500007187, 1989.
Short summary
Grain size is a key microphysical property of ice, controlling the rheological behavior of ice sheets and glaciers. In this study, we develop a new model for grain size evolution in ice and show that it accurately predicts grain size in laboratory experiments and in natural ice core data. The model provides a physical explanation for the power-law relationship between stress and strain rate known as the Glen law and can be used as a predictive tool for modeling ice flow in natural systems.
Grain size is a key microphysical property of ice, controlling the rheological behavior of ice...