Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4589-2021
https://doi.org/10.5194/tc-15-4589-2021
Research article
 | 
29 Sep 2021
Research article |  | 29 Sep 2021

The role of grain size evolution in the rheology of ice: implications for reconciling laboratory creep data and the Glen flow law

Mark D. Behn, David L. Goldsby, and Greg Hirth

Related authors

Seasonal drainage-system evolution beneath the Greenland Ice Sheet inferred from transient speed-up events
Grace Gjerde, Mark D. Behn, Laura A. Stevens, Sarah B. Das, and Ian Joughin
The Cryosphere, 19, 6149–6169, https://doi.org/10.5194/tc-19-6149-2025,https://doi.org/10.5194/tc-19-6149-2025, 2025
Short summary

Cited articles

Alley, R.: Flow-law hypotheses for ice-sheet modeling, J. Glaciol., 38, 245–256, https://doi.org/10.3189/S0022143000003658, 1992. 
Alley, R., Perepezko, H., and Bentley, C.: Grain growth in polar ice: 1. Theory, J. Glaciol., 32, 415–424, https://doi.org/10.3189/S0022143000012120, 1986. 
Alley, R. B.: Fabrics in Polar Ice Sheets: Development and Prediction, Science, 240, 493–495, https://doi.org/10.1126/science.240.4851.493, 1988. 
Alley, R. B. and Woods, G. A.: Impurity influence on normal grain growth in the GISP2 ice core, Greenland, J. Glaciol., 42, 255–260, https://doi.org/10.3189/S0022143000004111, 1996. 
Alley, R. B., Gow, A. J., and Meese, D. A.: Instruments and Methods Mapping c-axis fabrics to study physical processes in ice, J. Glaciol., 41, 197–203, https://doi.org/10.1017/S0022143000017895, 1995. 
Download
Short summary
Grain size is a key microphysical property of ice, controlling the rheological behavior of ice sheets and glaciers. In this study, we develop a new model for grain size evolution in ice and show that it accurately predicts grain size in laboratory experiments and in natural ice core data. The model provides a physical explanation for the power-law relationship between stress and strain rate known as the Glen law and can be used as a predictive tool for modeling ice flow in natural systems.
Share