Articles | Volume 15, issue 9
Research article
07 Sep 2021
Research article |  | 07 Sep 2021

Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas

Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle

Related authors

A coarse pixel-scale ground “truth” dataset based on global in situ site measurements to support validation and bias correction of satellite surface albedo products
Fei Pan, Xiaodan Wu, Qicheng Zeng, Rongqi Tang, Jingping Wang, Xingwen Lin, Dongqin You, Jianguang Wen, and Qing Xiao
Earth Syst. Sci. Data, 16, 161–176,,, 2024
Short summary
Long-term detection, mapping, and interpretation of the trend of ozone in China (1978–2020) by constructing long-term consistent ozone datasets
Rongqi Tang, Xiaodan Wu, Jingping Wang, Dujuan Ma, Qicheng Zeng, Jianguang Wen, and Qing Xiao
Atmos. Meas. Tech. Discuss.,,, 2022
Publication in AMT not foreseen
Short summary
Geometric accuracy assessment of coarse-resolution satellite datasets: a study based on AVHRR GAC data at the sub-pixel level
Xiaodan Wu, Kathrin Naegeli, and Stefan Wunderle
Earth Syst. Sci. Data, 12, 539–553,,, 2020
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773,,, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574,,, 2024
Short summary
Passive microwave remote-sensing-based high-resolution snow depth mapping for Western Himalayan zones using multifactor modeling approach
Dhiraj Kumar Singh, Srinivasarao Tanniru, Kamal Kant Singh, Harendra Singh Negi, and RAAJ Ramsankaran
The Cryosphere, 18, 451–474,,, 2024
Short summary
Retrieval of snow water equivalent from dual-frequency radar measurements: using time series to overcome the need for accurate a priori information
Michael Durand, Joel T. Johnson, Jack Dechow, Leung Tsang, Firoz Borah, and Edward J. Kim
The Cryosphere, 18, 139–152,,, 2024
Short summary
Snow accumulation, albedo and melt patterns following road construction on permafrost, Inuvik–Tuktoyaktuk Highway, Canada
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372,,, 2023
Short summary

Cited articles

Anderson, K., Fawcett, D., Cugulliere, A., Benford, S., Jones, D., and Leng, R.: Vegetation expansion in the subnival Hindu Kush Himalaya, Glob. Chang Biol., 26, 1608–1625,, 2020. 
Arsenault, K. R., Houser, P. R., and De Lannoy, G. J.: Evaluation of the MODIS snow cover fraction product, Hydrol. Process., 28, 980–998, 2014. 
Bookhagen, B. and Burbank, D. W.: Topography, relief, and TRMM-derived rainfall variations along the Himalaya, Geophys. Res. Lett., 33, L08405,, 2006. 
Brown, R. D. and Mote, P. W.: The response of Northern Hemisphere snow cover to a changing climate, J. Climate, 22, 2124–2145, 2009. 
Crawford, C. J.: MODIS Terra Collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+, Hydrol. Process., 29, 128–138, 2015. 
Short summary
We performed a comprehensive accuracy assessment of an Advanced Very High Resolution Radiometer global area coverage snow-cover extent time series dataset for the Hindu Kush Himalayan (HKH) region. The sensor-to-sensor consistency, the accuracy related to snow depth, elevations, land-cover types, slope, and aspects, and topographical variability were also explored. Our analysis shows an overall accuracy of 94 % in comparison with in situ station data, which is the same with MOD10A1 V006.