Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3699-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3699-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analyzing glacier retreat and mass balances using aerial and UAV photogrammetry in the Ötztal Alps, Austria
Joschka Geissler
3D RealityMaps GmbH, Dingolfinger Str. 9, Munich, 81673, Germany
Faculty of Environment and Natural Resources, Albert-Ludwigs-Universität Freiburg, Friedrichstr. 39, 79098 Freiburg, Germany
Christoph Mayer
Bavarian Academy of Science, Geodesy and Glaciology, Alfons-Goppel
Str. 11, Munich, 80539, Germany
Juilson Jubanski
3D RealityMaps GmbH, Dingolfinger Str. 9, Munich, 81673, Germany
Ulrich Münzer
Department of Earth and Environmental
Sciences, Section Geology (remote sensing), Ludwig-Maximilians-Universität München, Luisenstr. 37, 80333 Munich,
Germany
Florian Siegert
CORRESPONDING AUTHOR
Faculty of Biology, GeoBio Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
Related authors
No articles found.
Martin Rückamp, Gong Cheng, Karlheinz Gutjahr, Marco Möller, Petri K. E. Pellikka, and Christoph Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3150, https://doi.org/10.5194/egusphere-2025-3150, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The study simulates the 21st-century evolution of Great Aletsch Glacier and Hintereisferner using full-Stokes ice dynamics and surface mass balance under different emission scenarios. Results show significant ice loss, with Hintereisferner expected to disappear by mid-century. Great Aletsch Glacier vanish by the end of the century under high-emission scenarios, but persist under lower-emission scenarios. These trends agree with large-scale models except some variability.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Theresa Dobler, Wilfried Hagg, Martin Rückamp, Thorsten Seehaus, and Christoph Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2513, https://doi.org/10.5194/egusphere-2025-2513, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how a glacier in the Austrian Alps moves more slowly over time due to climate change. By combining long-term field data with recent aerial images, we show how thinning reduce glacier flow. Standard satellite methods failed to detect this slow movement, so we used manual tracking to create a reliable map. Our findings help understand changes in glacier behavior in a warming climate.
Akash M. Patil, Christoph Mayer, Thorsten Seehaus, and Alexander R. Groos
EGUsphere, https://doi.org/10.5194/egusphere-2025-615, https://doi.org/10.5194/egusphere-2025-615, 2025
Short summary
Short summary
We studied how snow and ice layers form and change in the Aletsch Glacier using radar and simple models. Our research mapped these layers' density and tracked their history over 12 years. This helps improve the glacier mass balance estimates. Using non-invasive radar techniques and models, we offer a new way to understand glaciers' evolution under regional climate conditions.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Christoph Mayer, Markus Weber, Anja Wendt, and Wilfried Hagg
Polarforschung, 89, 1–7, https://doi.org/10.5194/polf-89-1-2021, https://doi.org/10.5194/polf-89-1-2021, 2021
Short summary
Short summary
Only five small glaciers exist in the German part of the Alps. They are too small to play an important role in the regional hydrological system, but are significant remnants of the earlier glaciation of the northern Alps. Therefore, they have been mapped already in the 19th century and are monitored since about 1950. A survey in 2018 documents the recent status of the glaciers. The synthesis of the long term monitoring and an estimate of the future for these small ice bodies is presented here.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Cited articles
Abermann, J., Lambrecht, A., Fischer, A., and Kuhn, M.: Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969-1997-2006), The Cryosphere, 3, 205–215, https://doi.org/10.5194/tc-3-205-2009, 2009.
Andreassen, L. M., Elvehøy, H., Kjøllmoen, B., and Engeset, R. V.: Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers, The Cryosphere, 10, 535–552, https://doi.org/10.5194/tc-10-535-2016, 2016.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R.,
Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P.,
Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre,
O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V.,
Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar,
T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and
Nieplova, E.: HISTALP–historical instrumental climatological surface time
series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46,
https://doi.org/10.1002/joc.1377, 2007.
Bavarian Academy of Sciences and Humanities (BAdW): Mass balance of the Vernagtferner, available at: https://geo.badw.de/vernagtferner-digital/massenbilanz.html, last access:
23 July 2021.
Baltsavias, E. P., Favey, E., Bauder, A., Bosch, H., and Pateraki, M.:
Digital Surface Modelling by Airborne Laser Scanning and Digital
Photogrammetry for Glacier Monitoring, Photogramm. Rec., 17,
243–273, https://doi.org/10.1111/0031-868X.00182, 2001.
Bamber, J. L. and Rivera, A.: A review of remote sensing methods for glacier
mass balance determination, Global Planet. Change, 59, 138–148,
https://doi.org/10.1016/j.gloplacha.2006.11.031, 2007.
Belart, J. M. C., Magnússon, E., Berthier, E., Pálsson, F.,
Adalgeirsdottir, G., and Jóhannesson, T.: The geodetic mass balance of
Eyjafjallajökull ice cap for 1945–2014: processing guidelines and
relation to climate, J. Glaciol., 65, 395–409, https://doi.org/10.1017/jog.2019.16, 2019.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.
Braithwaite, R. J. and Zhang, Y.: Sensitivity of mass balance of five Swiss
glaciers to temperature changes assessed by tuning a degree-day model,
J. Glaciol., 46, 7–14, https://doi.org/10.3189/172756500781833511, 2000.
Cogley, G.: Mass-balance terms revisited, J. Glaciology, 56,
997–1001, https://doi.org/10.3189/002214311796406040, 2010.
Cogley, G., Hock, R., Rasmussen, L. A., Arendt, A. A., and Zemp, M.: Glossary
of glacier mass balance and related terms, 86, UNESCO/IHP, https://doi.org/10.5167/uzh-53475, 2011.
Davaze, L., Rabatel, A., Dufour, A., Hugonnet, R., and Arnaud, Y.:
Region-Wide Annual Glacier Surface Mass Balance for the European Alps From
2000 to 2016, Front. Earth Sci., 8, 149, https://doi.org/10.3389/feart.2020.00149, 2020.
Escher-Vetter, H.: 400 Jahre Feldforschung am Vernagtferner (Ötztal,
Österreich), Warnsignal Klima / Wissenschaftliche
Auswertungen, edited by: Lozan, J. L., Graßl, H., Kasang, D., Notz, D., and Escher-Vetter, H., Hamburg, 299 pp., ch. 4.7 (146–154), 2015.
Escher-Vetter, H., Kuhn, M., and Weber, M.: Four decades of winter mass
balance of Vernagtferner and Hintereisferner, Austria: methodology and
results, Ann. Glaciol., 50, 87–95, https://doi.org/10.3189/172756409787769672, 2009.
Fischer, A.: Comparison of direct and geodetic mass balances on a multi-annual time scale, The Cryosphere, 5, 107–124, https://doi.org/10.5194/tc-5-107-2011, 2011.
Fischer, A., Schneider, H., Merkel, G., and Sailer, R.: Comparison of direct and geodetic mass balances on an annual time scale, The Cryosphere Discuss., 5, 565–604, https://doi.org/10.5194/tcd-5-565-2011, 2011.
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015.
Fischer, M., Huss, M., and Hoelzle, M.: Surface elevation and mass changes of all Swiss glaciers 1980–2010, The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, 2015.
Fliri, F.: Das Klima der Alpen im Raume von Tirol, Universitätsverlag Wagner, Innsbruck, Austria, ISBN: 3703000090, 1975.
Fugazza, D., Scaioni, M., Corti, M., D'Agata, C., Azzoni, R. S., Cernuschi, M., Smiraglia, C., and Diolaiuti, G. A.: Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards, Nat. Hazards Earth Syst. Sci., 18, 1055–1071, https://doi.org/10.5194/nhess-18-1055-2018, 2018.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and
Stoffel, M.: 21st century climate change in the European Alps – a
review, Sci. Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Gudmundsson, G. H. and Bauder, A.: Towards an Indirect Determination of the Mass-Balance Distribution of Glaciers Using the Kinematic Boundary Condition., Geogr. Ann. A, 81, 575–583, available at: http://www.jstor.org/stable/521495 (last access: 22 July 2021), 1999.
Hanzer, F., Förster, K., Nemec, J., and Strasser, U.: Projected
cryospheric and hydrological impacts of 21st century climate change in
the Ötztal Alps (Austria) simulated using a physically based approach,
in: Hydrology and Earth System Sciences, 22, 1593–1614, https://doi.org/10.15488/3378, 2018.
Heipke, C.: Photogrammetrie und Fernerkundung, Springer, Berlin, Heidelberg,
Germany, 2017.
Hirschmüller, H.: Semi-Global Matching. Motivation, Developments and
Applications, available at: https://elib.dlr.de/73119/1/180Hirschmueller.pdf (last access: 22 July 2021), 2019.
Hock, R.: Temperature index melt modelling in mountain areas, J.
Hydrol., 282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003.
Huss, M.: Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100, The Cryosphere, 6, 713–727, https://doi.org/10.5194/tc-6-713-2012, 2012.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Huss, M., Bauder, A., and Funk, M.: Homogenization of long-term mass-balance
time series, Ann. Glaciol., 50, 198–206, https://doi.org/10.3189/172756409787769627, 2009.
Jaenicke, J., Mayer, C., Scharrer, K., Münzer, U., and Gudmundsson, A.:
The use of remote-sensing data for mass-balance studies at
Mýrdalsjökull ice cap, Iceland, J. Glaciol., 52, 565–573,
https://doi.org/10.3189/172756506781828340, 2006.
Kääb, A.: Remote sensing of mountain glaciers and permafrost creep,
Physical Geography Series 48, 53, 266 pp., https://doi.org/10.3189/172756507781833857, 2005.
Kargel, J. S., Bishop, M. P., Kääb, A., and Raup, B.: Global Land Ice
Measurements from Space, Springer, Dordrecht, 2013.
Kaser, G., Fountain, A., Jansson, P., Heucke, E., and Knaus, M.: A manual for
monitoring the mass balance of mountain glaciers, UNESCO, available
at: https://globalcryospherewatch.org/bestpractices/docs/UNESCO_manual_glaciers_2003.pdf (last access: 23 July 2021), 137 pp., 2003.
Klug, C., Bollmann, E., Galos, S. P., Nicholson, L., Prinz, R., Rieg, L., Sailer, R., Stötter, J., and Kaser, G.: Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria, The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018, 2018.
Lambrecht, A., Mayer, C., Hagg, W., Popovnin, V., Rezepkin, A., Lomidze, N., and Svanadze, D.: A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus, The Cryosphere, 5, 525–538, https://doi.org/10.5194/tc-5-525-2011, 2011.
Legat, K., Moe, K., Poli, D., and Bollmannb, E.: Exploring the potential of aerial photogrammetry for 3d modelling of high-alpine environments, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3/W4, 97–103, https://doi.org/10.5194/isprs-archives-XL-3-W4-97-2016, 2016.
Magnússon, E., Muñoz-Cobo Belart, J., Pálsson, F., Ágústsson, H., and Crochet, P.: Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland, The Cryosphere, 10, 159–177, https://doi.org/10.5194/tc-10-159-2016, 2016.
Marty, C. and Meister, R.: Long-term snow and weather observations at
Weissfluhjoch and its relation to other high-altitude observatories in the
Alps, Theor. Appl. Climatol., 110, 573–583, https://doi.org/10.1007/s00704-012-0584-3, 2012.
Mayer, C., Escher-Vetter, H., and Weber, M.: 46 Jahre glaziologische
Massenbilanz des Vernagtferners, Zeitschrift für Gletscherkunde und
Glazialgeologie, 45/46, 219–234, 2013a.
Mayer, C., Lambrecht, A., Blumthaler, U., and Eisen, O.: Vermessung und
Eisdynamik des Vernagtferners, Ötztaler Alpen, Zeitschrift für
Gletscherkunde und Glazialgeologie, 45/46, 259–280, 2013b.
Mayer, C., Jaenicke, J., Lambrecht, A., Braun, L., Völksen, C., Minet,
C., and Münzer, U.: Local surface mass-balance reconstruction from a
tephra layer – a case study on the northern slope of Mýrdalsjökull,
Iceland, J. Glaciol., 63, 79–87, https://doi.org/10.1017/jog.2016.119, 2017.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Östrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence
of Ice Cores in Moraine Ridges, Geografiska Annaler, 228–230, https://doi.org/10.1080/20014422.1959.11907953, 1959.
Pellikka, P. K. E. and Rees, W. G. (Eds.): Remote sensing of glaciers:
techniques for topographic, spatial and thematic mapping of glaciers, Taylor
& Francis, New York, USA, 2010.
Pelto, B. M., Menounos, B., and Marshall, S. J.: Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada, The Cryosphere, 13, 1709–1727, https://doi.org/10.5194/tc-13-1709-2019, 2019.
Rabatel, A., Dedieu, J.-P., and Vincent, C.: Using remote-sensing data to
determine equilibrium-line altitude and mass-balance time series: validation
on three French glaciers, 1994–2002, J. Glaciol., 51, 539–546,
https://doi.org/10.3189/172756505781829106, 2005.
Reeh, N.: A nonsteady-state firn-densification model for the percolation
zone of a glacier, J. Geophys. Res., 113, F03023, https://doi.org/10.1029/2007JF000746, 2008.
Rogora, M., Frate, L., Carranza, M. L., Freppaz, M., Stanisci, A., Bertani,
I., Bottarin, R., Brambilla, A., Canullo, R., Carbognani, M., Cerrato, C.,
Chelli, S., Cremonese, E., Cutini, M., Di Musciano, M., Erschbamer, B.,
Godone, D., Iocchi, M., Isabellon, M., Magnani, A., Mazzola, L., Di Morra
Cella, U., Pauli, H., Petey, M., Petriccione, B., Porro, F., Psenner, R.,
Rossetti, G., Scotti, A., Sommaruga, R., Tappeiner, U., Theurillat, J.-P.,
Tomaselli, M., Viglietti, D., Viterbi, R., Vittoz, P., Winkler, M., and
Matteucci, G.: Assessment of climate change effects on mountain ecosystems
through a cross-site analysis in the Alps and Apennines, Sci.
Total Environ., 624, 1429–1442, https://doi.org/10.1016/j.scitotenv.2017.12.155, 2018.
Rolstad, C., Haug, T., and Denby, B.: Spatially integrated geodetic glacier
mass balance and its uncertainty based on geostatistical analysis:
application to the western Svartisen ice cap, Norway, J. Glaciol., 55,
666–680, https://doi.org/10.3189/002214309789470950, 2009.
Rossini, M., Di Mauro, B., Garzonio, R., Baccolo, G., Cavallini, G.,
Mattavelli, M., de Amicis, M., and Colombo, R.: Rapid melting dynamics of an
alpine glacier with repeated UAV photogrammetry, Geomorphology, 304,
159–172, https://doi.org/10.1016/j.geomorph.2017.12.039, 2018.
Scherler, D., Wulf, H., and Gorelick, N.: Global Assessment of Supraglacial
Debris-Cover Extents, Geophys. Res. Lett., 45, 798–805, https://doi.org/10.1029/2018GL080158, 2018.
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M.:
Rapid glacier retreat and downwasting throughout the European Alps in the
early 21 st century, Nat. Commun., 11, 3209, https://doi.org/10.1038/s41467-020-16818-0, 2020.
Vargo, L. J., Anderson, B. M., Horgan, H. J., Mackintosh, A. N., Lorrey, A.
M., and Thornton, M.: Using structure from motion photogrammetry to measure
past glacier changes from historic aerial photographs, J.
Glaciol., 63, 1105–1118, https://doi.org/10.1017/jog.2017.79, 2017.
World Glacier Monitoring Service (WGMS): Global Glacier Change Bulletin, available at: https://wgms.ch/products_ref_glaciers/hintereisferner-alps/ (last access: 22 July 2021), 2020.
Zekollari, H., Huss, M., and Farinotti, D.: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble, The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, 2019.
Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S. U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P. C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L. M.: Reanalysing glacier mass balance measurement series, The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, 2013.
Short summary
The study demonstrates the potential of photogrammetry for analyzing glacier retreat with high spatial resolution. Twenty-three glaciers within the Ötztal Alps are analyzed. We compare photogrammetric and glaciologic mass balances of the Vernagtferner by using the ELA for our density assumption and an UAV survey for a temporal correction of the geodetic mass balances. The results reveal regions of anomalous mass balance and allow estimates of the imbalance between mass balances and ice dynamics.
The study demonstrates the potential of photogrammetry for analyzing glacier retreat with high...