Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3317-2021
https://doi.org/10.5194/tc-15-3317-2021
Brief communication
 | 
19 Jul 2021
Brief communication |  | 19 Jul 2021

Brief communication: Thwaites Glacier cavity evolution

Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford

Related authors

TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022,https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Rapid fragmentation of Thwaites Eastern Ice Shelf
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022,https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
The 2020 Larsen C Ice Shelf surface melt is a 40-year record high
Suzanne Bevan, Adrian Luckman, Harry Hendon, and Guomin Wang
The Cryosphere, 14, 3551–3564, https://doi.org/10.5194/tc-14-3551-2020,https://doi.org/10.5194/tc-14-3551-2020, 2020
Short summary
An updated seabed bathymetry beneath Larsen C Ice Shelf, Antarctic Peninsula
Alex Brisbourne, Bernd Kulessa, Thomas Hudson, Lianne Harrison, Paul Holland, Adrian Luckman, Suzanne Bevan, David Ashmore, Bryn Hubbard, Emma Pearce, James White, Adam Booth, Keith Nicholls, and Andrew Smith
Earth Syst. Sci. Data, 12, 887–896, https://doi.org/10.5194/essd-12-887-2020,https://doi.org/10.5194/essd-12-887-2020, 2020
Short summary
Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019,https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024,https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary
Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model
Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn
The Cryosphere, 18, 653–681, https://doi.org/10.5194/tc-18-653-2024,https://doi.org/10.5194/tc-18-653-2024, 2024
Short summary
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023,https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Evaluation of four calving laws for Antarctic ice shelves
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023,https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Englacial architecture of Lambert Glacier, East Antarctica
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023,https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary

Cited articles

Armitage, T. W. K., Kwok, R., Thompson, A. F., and Cunningham, G.: Dynamic Topography and Sea Level Anomalies of the Southern Ocean: Variability and Teleconnections, J. Geophys. Res.-Oceans, 123, 613–630, https://doi.org/10.1002/2017JC013534, 2018. a
Bevan, S., Luckman, A., and Benn, D.: Thwaites Glacier ice surface elevation profiles from June 2011 to November 2020, BAS [data set], https://doi.org/10.5285/EDE3520B-CF1C-4979-AFCC-94AC266BB61A, 2021a. a
Bevan, S., Luckman, A., and Benn, D.: Thwaites Glacier time series of surface elevations at (107.09 W, 75.48 S) from January 2012 to November 2020, BAS, https://doi.org/10.5285/21B3D4FA-0EDF-4B05-B762-B4633616B0BC, 2021b. a
Bevan, S., Luckman, A., and Benn, D.: Thwaites Glacier time series ice surface flow speeds at (107.09 W, 75.48 S) from January 2012 to December 2020, BAS, https://doi.org/10.5285/C0C1050A-2360-4464-9B0F-C2C101E5D1C2, 2021c. a
Bevan, S., Luckman, A., and Benn, D.: Thwaites Glacier ice surface elevation change, December 2013 to July 2017, and July 2017 to November 2020, BAS, https://doi.org/10.5285/DF8C4AC0-1723-43AE-AD48-D02D58699F32, 2021d. a
Download
Short summary
The stability of the West Antarctic ice sheet depends on the behaviour of the fast-flowing glaciers, such as Thwaites, that connect it to the ocean. Here we show that a large ocean-melted cavity beneath Thwaites Glacier has remained stable since it first formed, implying that, in line with current theory, basal melt is now concentrated close to where the ice first goes afloat. We also show that Thwaites Glacier continues to thin and to speed up and that continued retreat is therefore likely.