Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2701-2021
https://doi.org/10.5194/tc-15-2701-2021
Research article
 | 
16 Jun 2021
Research article |  | 16 Jun 2021

Methane cycling within sea ice: results from drifting ice during late spring, north of Svalbard

Josefa Verdugo, Ellen Damm, and Anna Nikolopoulos

Related authors

Methane pathways in winter ice of a thermokarst lake–lagoon–coastal water transect in north Siberia
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021,https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020,https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Studying boundary layer methane isotopy and vertical mixing processes at a rewetted peatland site using an unmanned aircraft system
Astrid Lampert, Falk Pätzold, Magnus O. Asmussen, Lennart Lobitz, Thomas Krüger, Thomas Rausch, Torsten Sachs, Christian Wille, Denis Sotomayor Zakharov, Dominik Gaus, Stephan Bansmer, and Ellen Damm
Atmos. Meas. Tech., 13, 1937–1952, https://doi.org/10.5194/amt-13-1937-2020,https://doi.org/10.5194/amt-13-1937-2020, 2020
Short summary
Vertical distribution of methane oxidation and methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord Storfjorden (Svalbard, Norway)
S. Mau, J. Blees, E. Helmke, H. Niemann, and E. Damm
Biogeosciences, 10, 6267–6278, https://doi.org/10.5194/bg-10-6267-2013,https://doi.org/10.5194/bg-10-6267-2013, 2013

Related subject area

Discipline: Sea ice | Subject: Biogeochemistry/Biology
Variability in sea ice carbonate chemistry: a case study comparing the importance of ikaite precipitation, bottom-ice algae, and currents across an invisible polynya
Brent G. T. Else, Araleigh Cranch, Richard P. Sims, Samantha Jones, Laura A. Dalman, Christopher J. Mundy, Rebecca A. Segal, Randall K. Scharien, and Tania Guha
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022,https://doi.org/10.5194/tc-16-3685-2022, 2022
Short summary

Cited articles

Coleman, D. D., Risatti, J. D., and Schoell, M.: Fractionation of carbon and hydrogen isotopes by methane-oxidising bacteria, Geochim. Cosmochim. Ac., 45, 1033–1037, 1981. 
Cox, G. F. N. and Weeks, W. F.: CRREL Report 82-30, Equations for Determining the Gas and Brine Volumes in Sea Ice Samples, J. Glaciol., 29, 306–316, 1983. 
Crabeck, O., Delille, B., Rysgaard, S., Thomas, D. N., Geilfus, N.-X., Else, B., and Tison, J.-L.: First “in situ” determination of gas transport coefficients (DO2, DAr, and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice, J. Geophys. Res.-Oceans, 119, 6655–6668, https://doi.org/10.1002/2014JC009849, 2014. 
Damm, E., Mackensen, A., Budéus, G., Faber, E., and Hanfland, C.: Pathways of methane in seawater: Plume spreading in an Arctic shelf environment (SW-Spitsbergen), Cont. Shelf Res., 25, 1453–1472, https://doi.org/10.1016/j.csr.2005.03.003, 2005. 
Damm, E., Rudels, B., Schauer, U., Mau, S., and Dieckmann, G.: Methane excess in Arctic surface water-triggered by sea ice formation and melting, Sci. Rep., 5, 16179, https://doi.org/10.1038/srep16179, 2015. 
Download
Short summary
We show that the ice structures determine the fate of methane during the early melt season and that sea ice may act as a sink of methane when methane oxidation occurs in specific layers of thick and complex sea ice. In spring, when ice melt starts, sea ice methane released into the ocean is the favored pathway. We suggest that changes in ice cover are thus likely to change the methane pathways in the Arctic Ocean and sea ice as a potential source of methane supersaturation in surface waters.