Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2701-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2701-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methane cycling within sea ice: results from drifting ice during late spring, north of Svalbard
Josefa Verdugo
CORRESPONDING AUTHOR
Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine
Research, Bremerhaven, 27570, Germany
Faculty 2 Biology/Chemistry, University of Bremen, Bremen, 28359,
Germany
Ellen Damm
Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine
Research, Bremerhaven, 27570, Germany
now at: Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, 14473, Germany
Anna Nikolopoulos
Institute of Marine Research, P.O. Box 1870 Nordnes, Bergen, 5817,
Norway
Related authors
No articles found.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Astrid Lampert, Falk Pätzold, Magnus O. Asmussen, Lennart Lobitz, Thomas Krüger, Thomas Rausch, Torsten Sachs, Christian Wille, Denis Sotomayor Zakharov, Dominik Gaus, Stephan Bansmer, and Ellen Damm
Atmos. Meas. Tech., 13, 1937–1952, https://doi.org/10.5194/amt-13-1937-2020, https://doi.org/10.5194/amt-13-1937-2020, 2020
Short summary
Short summary
Methane has high climate warming potential. Sources of methane can be distinguished by the isotopic composition. To investigate the origin of methane, an airborne sampling system has been developed that can take air samples worldwide and at various altitudes. The article shows the performance of the overall system, from taking samples to laboratory analyses. As known methane source, a rewetted peatland site, was studied, and the vertical distribution of the isotopic composition is investigated.
S. Mau, J. Blees, E. Helmke, H. Niemann, and E. Damm
Biogeosciences, 10, 6267–6278, https://doi.org/10.5194/bg-10-6267-2013, https://doi.org/10.5194/bg-10-6267-2013, 2013
Related subject area
Discipline: Sea ice | Subject: Biogeochemistry/Biology
Variability in sea ice carbonate chemistry: a case study comparing the importance of ikaite precipitation, bottom-ice algae, and currents across an invisible polynya
Brent G. T. Else, Araleigh Cranch, Richard P. Sims, Samantha Jones, Laura A. Dalman, Christopher J. Mundy, Rebecca A. Segal, Randall K. Scharien, and Tania Guha
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022, https://doi.org/10.5194/tc-16-3685-2022, 2022
Short summary
Short summary
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from two sites to look for differences in carbon chemistry: one site had thin ice due to strong ocean currents and thick snow; the other site had thick ice, thin snow, and weak currents. We did find some differences in small layers near the top and the bottom of the cores, but for most of the ice volume the chemistry was the same. This result will help build better models of the carbon sink in polar oceans.
Cited articles
Coleman, D. D., Risatti, J. D., and Schoell, M.: Fractionation of carbon and
hydrogen isotopes by methane-oxidising bacteria, Geochim. Cosmochim. Ac.,
45, 1033–1037, 1981.
Cox, G. F. N. and Weeks, W. F.: CRREL Report 82-30, Equations for
Determining the Gas and Brine Volumes in Sea Ice Samples, J. Glaciol.,
29, 306–316, 1983.
Crabeck, O., Delille, B., Rysgaard, S., Thomas, D. N., Geilfus, N.-X., Else,
B., and Tison, J.-L.: First “in situ” determination of gas transport
coefficients ( , DAr, and ) from bulk gas concentration measurements
(O2, N2, Ar) in natural sea ice, J. Geophys. Res.-Oceans, 119,
6655–6668, https://doi.org/10.1002/2014JC009849, 2014.
Damm, E., Mackensen, A., Budéus, G., Faber, E., and Hanfland, C.:
Pathways of methane in seawater: Plume spreading in an Arctic shelf
environment (SW-Spitsbergen), Cont. Shelf Res., 25, 1453–1472,
https://doi.org/10.1016/j.csr.2005.03.003, 2005.
Damm, E., Rudels, B., Schauer, U., Mau, S., and Dieckmann, G.: Methane excess
in Arctic surface water-triggered by sea ice formation and melting, Sci.
Rep., 5, 16179, https://doi.org/10.1038/srep16179, 2015.
Damm, E., Nomura, D., Martin, A., Dieckmann, G. S., and Meiners, K. M.: DMSP
and DMS cycling within Antarctic sea ice during the winter-spring
transition, Deep. Res. Pt. II, 131, 150–159,
https://doi.org/10.1016/j.dsr2.2015.12.015, 2016.
Damm, E., Bauch, D., Krumpen, T., Rabe, B., Korhonen, M., Vinogradova, E.,
and Uhlig, C.: The Transpolar Drift conveys methane from the Siberian Shelf
to the central Arctic Ocean, Sci. Rep., 8, 4515,
https://doi.org/10.1038/s41598-018-22801-z, 2018.
Eicken, H.: Tracer studies of pathways and rates of meltwater transport
through Arctic summer sea ice, J. Geophys. Res., 107, 8046,
https://doi.org/10.1029/2000JC000583, 2002.
Fer, I., Müller, M., and Peterson, A. K.: Tidal forcing, energetics, and mixing near the Yermak Plateau, Ocean Sci., 11, 287–304, https://doi.org/10.5194/os-11-287-2015, 2015.
Gill, A. E.: Atmosphere-Ocean Dynamics, International Geophysics Series,
vol. 30, Academic Press, USA, ISBN 0-12-283522-0, 666 pp., 1982.
Gleitz, M., v.d. Loeff, M. R., Thomas, D. N., Dieckmann, G. S., and Millero,
F. J.: Comparison of summer and winter inorganic carbon, oxygen and nutrient
concentrations in Antarctic sea ice brine, Mar. Chem., 51, 81–91,
https://doi.org/10.1016/0304-4203(95)00053-T, 1995.
Golden, K. M., Ackley, S. F., and Lytle, V. I.: The percolation phase
transition in sea Ice, Science, 282, 2238–2241,
https://doi.org/10.1126/science.282.5397.2238, 1998.
Grasshoff, K., Ehrhardt, M., and Kremling, K. (Eds.): Methods of Seawater Analysis, 2nd edn., Verlag Chemie, Weinheim, 419 pp., 1983.
Graves, C. A., Steinle, L., Rehder, G., Niemann, H., Connelly, D. P., Lowry,
D., Fisher, R. E., Stott, A. W., Sahling, H., and James, R. H.: Fluxes and
fate of dissolved methane released at the seafloor at the landward limit of
the gas hydrate stability zone offshore western Svalbard, J. Geophys. Res.-Oceans, 120, 6185–6201, https://doi.org/10.1002/2015JC011084, 2015.
Hansen, E., Gerland, S., Granskog, M. A., Pavlova, O., Renner, A. H. H.,
Haapala, J., Løyning, T. B., and Tschudi, M.: Thinning of Arctic sea ice
observed in Fram Strait: 1990–2011, J. Geophys. Res.-Oceans, 118,
5202–5221, https://doi.org/10.1002/jgrc.20393, 2013.
Happell, J. J. D., Chanton, J. P. J., and Showers, W. W. J.: Methane Transfer
Across the Water-Air Interface in Stagnant Wooded Swamps of Florida:
Evaluation of Mass-Transfer Coefficients and Isotopic Fractionation, Limnol.
Oceanogr., 40, 290–298, https://doi.org/10.4319/lo.1995.40.2.0290, 1995.
He, X., Sun, L., Xie, Z., Huang, W., Long, N., Li, Z., and Xing, G.: Sea ice
in the Arctic Ocean: Role of shielding and consumption of methane, Atmos.
Environ., 67, 8–13, https://doi.org/10.1016/j.atmosenv.2012.10.029, 2013.
IOC, SCOR and IAPSO: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp., available at: http://www.teos-10.org/ (last access: 14 October 2019), 2010.
Krumpen, T., Gerdes, R., Haas, C., Hendricks, S., Herber, A., Selyuzhenok, V., Smedsrud, L., and Spreen, G.: Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes, The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, 2016.
Krumpen, T., Belter, H. J., Boetius, A., Damm, E., Haas, C., Hendricks, S.,
Nicolaus, M., Nöthig, E. M., Paul, S., Peeken, I., Ricker, R., and Stein,
R.: Arctic warming interrupts the Transpolar Drift and affects long-range
transport of sea ice and ice-rafted matter, Sci. Rep., 9, 1–9,
https://doi.org/10.1038/s41598-019-41456-y, 2019.
Krumpen, T., Birrien, F., Kauker, F., Rackow, T., von Albedyll, L., Angelopoulos, M., Belter, H. J., Bessonov, V., Damm, E., Dethloff, K., Haapala, J., Haas, C., Harris, C., Hendricks, S., Hoelemann, J., Hoppmann, M., Kaleschke, L., Karcher, M., Kolabutin, N., Lei, R., Lenz, J., Morgenstern, A., Nicolaus, M., Nixdorf, U., Petrovsky, T., Rabe, B., Rabenstein, L., Rex, M., Ricker, R., Rohde, J., Shimanchuk, E., Singha, S., Smolyanitsky, V., Sokolov, V., Stanton, T., Timofeeva, A., Tsamados, M., and Watkins, D.: The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf, The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, 2020.
Leppäranta, M. and Manninen, T.: The brine and gas content of sea ice
with attention to low salinities and high temperatures, Finnish Inst. Mar.
Res. Intern. Rep., 2, 1–14, 1988.
Loose, B., Kelly, R. P., Bigdeli, A., Williams, W., Krishfield, R., Rutgers
van der Loeff, M. and Moran, S. B.: How well does wind speed predict air-sea
gas transfer in the sea ice zone? A synthesis of radon deficit profiles in
the upper water column of the Arctic Ocean, J. Geophys. Res.-Oceans, 122,
3696–3714, https://doi.org/10.1002/2016JC012460, 2017.
Macke, A. and Flores, H.: The Expeditions PS106/1 and 2 of the Research
Vessel POLARSTERN to the Arctic Ocean in 2017, 171 pp., Alfred-Wegener-Institut,
Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven,
Germany, 2018.
Maslanik, J., Stroeve, J., Fowler, C., and Emery, W.: Distribution and trends
in Arctic sea ice age through spring 2011, Geophys. Res. Lett., 38,
2–7, https://doi.org/10.1029/2011GL047735, 2011.
Maslanik, J. A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and
Emery, W.: A younger, thinner Arctic ice cover: Increased potential for
rapid, extensive sea-ice loss, Geophys. Res. Lett., 34, L24501,
https://doi.org/10.1029/2007GL032043, 2007.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: IPCC Special
Report on the Ocean and Cryosphere in a Changing Climate, in: Chapter 3: Polar Regions, edited by:
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK, https://www.ipcc.ch/srocc/ (last access:
30 July 2020), 2019.
Meyer, A., Sundfjord, A., Fer, I., Provost, C., Villacieros Robineau, N.,
Koenig, Z., Onarheim, I. H., Smedsrud, L. H., Duarte, P., Dodd, P. A.,
Graham, R. M., Schmidtko, S., and Kauko, H. M.: Winter to summer
oceanographic observations in the Arctic Ocean north of Svalbard, J. Geophys. Res.-Oceans, 122, 6218–6237, https://doi.org/10.1002/2016JC012391, 2017.
Mook, W. G.: Principles of Isotope Hydrology, Report University of Groningen, Netherlands, p. 153, 1994.
Mysak, L. A.: OCEANOGRAPHY: Enhanced: Patterns of Arctic Circulation, Science, 293, 1269–1270, https://doi.org/10.1126/science.1064217, 2001.
Nikolopoulos, A., Linders, T., and Rohardt, G.: Physical oceanography during
POLARSTERN cruise PS106/1 (ARK-XXXI/1.1). Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA (data set), https://doi.org/10.1594/PANGAEA.885442,
2018.
Orvik, K. A. and Niiler, P.: Major pathways of Atlantic water in the
northern North Atlantic and Nordic Seas toward Arctic, Geophys. Res. Lett.,
29, 2-1–2-4, https://doi.org/10.1029/2002GL015002, 2002.
Padman, L., Plueddemann, A. J., Muench, R. D., and Pinkel, R.: Diurnal tides
near the Yermak Plateau, J. Geophys. Res., 97, 12639,
https://doi.org/10.1029/92JC01097, 1992.
Parmentier, F.-J. W., Christensen, T. R., Sørensen, L. L., Rysgaard, S.,
McGuire, A. D., Miller, P. A., and Walker, D. A.: The impact of lower sea-ice
extent on Arctic greenhouse-gas exchange, Nat. Clim. Chang., 3, 195–202,
https://doi.org/10.1038/nclimate1784, 2013.
Peralta-Ferriz, C. and Woodgate, R. A.: Seasonal and interannual variability
of pan-Arctic surface mixed layer properties from 1979 to 2012 from
hydrographic data, and the dominance of stratification for multiyear mixed
layer depth shoaling, Prog. Oceanogr., 134, 19–53,
https://doi.org/10.1016/j.pocean.2014.12.005, 2015.
Perovich, D., Meier, W., Tschudi, M., Hendricks, S., Petty, A. A., Divine,
D., Farrell, S., Gerland, S., Haas, C., Kaleschke, L., Pavlova, O., Richer,
R., Tian-Kunze, X., Webster, M., and Wood, K.: Sea Ice,
https://doi.org/10.25923/n170-9h57, 2020.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T.
M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T.,
Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin,
A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin
of the Arctic Ocean, Science, 356, 285–291,
https://doi.org/10.1126/science.aai8204, 2017.
Polyakov, I. V., Alkire, M. B., Bluhm, B. A., Brown, K. A., Carmack, E. C.,
Chierici, M., Danielson, S. L., Ellingsen, I., Ershova, E. A.,
Gårdfeldt, K., Ingvaldsen, R. B., Pnyushkov, A. V., Slagstad, D., and
Wassmann, P.: Borealization of the Arctic Ocean in Response to Anomalous
Advection From Sub-Arctic Seas, Front. Mar. Sci., 7, 491,
https://doi.org/10.3389/fmars.2020.00491, 2020.
Provost, C., Sennéchael, N., Miguet, J., Itkin, P., Rösel, A.,
Koenig, Z., Villacieros-Robineau, N., and Granskog, M. A.: Observations of
flooding and snow-ice formation in a thinner Arctic sea-ice regime during
the N-ICE2015 campaign: Influence of basal ice melt and storms, J. Geophys. Res.-Oceans, 122, 7115–7134, https://doi.org/10.1002/2016JC012011, 2017.
Quay, P. D., Steele, L. P., Fung, I., and Gammon, R. H.: Carbon isotopic
composition of atmospheric CH4, Global Biogeochem. Cy., 5, 25–47,
1991.
Rudels, B.: Arctic Ocean circulation and variability – advection and external forcing encounter constraints and local processes, Ocean Sci., 8, 261–286, https://doi.org/10.5194/os-8-261-2012, 2012.
Rudels, B., Meyer, R., Fahrbach, E., Ivanov, V. V., Østerhus, S., Quadfasel, D., Schauer, U., Tverberg, V., and Woodgate, R. A.: Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997, Ann. Geophys., 18, 687–705, https://doi.org/10.1007/s00585-000-0687-5, 2000.
Rutgers van der Loeff, M. M., Cassar, N., Nicolaus, M., Rabe, B., and Stimac,
I.: The influence of sea ice cover on air-sea gas exchange estimated with
radon-222 profiles, J. Geophys. Res.-Oceans, 119, 2735–2751,
https://doi.org/10.1002/2013JC009321, 2014.
Sahling, H., Römer, M., Pape, T., Bergès, B., dos Santos Fereirra, C., Boelmann, J., Geprägs, P., Tomczyk, M., Nowald, N., Dimmler, W., Schroedter, L., Glockzin, M., and Bohrmann, G.: Gas emissions at the continental margin west of Svalbard: mapping, sampling, and quantification, Biogeosciences, 11, 6029–6046, https://doi.org/10.5194/bg-11-6029-2014, 2014.
Sapart, C. J., Shakhova, N., Semiletov, I., Jansen, J., Szidat, S., Kosmach, D., Dudarev, O., van der Veen, C., Egger, M., Sergienko, V., Salyuk, A., Tumskoy, V., Tison, J.-L., and Röckmann, T.: The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis, Biogeosciences, 14, 2283–2292, https://doi.org/10.5194/bg-14-2283-2017, 2017.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de, last access: 1 July 2020.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334–1337,
https://doi.org/10.1038/nature09051, 2010.
Serreze, M. C. and Francis, J. A.: The Arctic Amplification Debate, Clim.
Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y, 2006.
Shakhova, N., Semiletov, I., and Panteleev, G.: The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle, Geophys. Res. Lett., 32, L09601, https://doi.org/10.1029/2005GL022751, 2005.
Shakhova, N., Semiletov, I., Leifer, I., Salyuk, A., Rekant, P., and Kosmach,
D.: Geochemical and geophysical evidence of methane release over the East
Siberian Arctic Shelf, J. Geophys. Res., 115, C08007,
https://doi.org/10.1029/2009JC005602, 2010.
Silyakova, A., Jansson, P., Serov, P., Ferré, B., Pavlov, A. K.,
Hattermann, T., Graves, C. A., Platt, S. M., Myhre, C. L., Gründger, F.,
and Niemann, H.: Physical controls of dynamics of methane venting from a
shallow seep area west of Svalbard, Cont. Shelf Res., 194, 104030,
https://doi.org/10.1016/j.csr.2019.104030, 2020.
Smith, A. J., Mienert, J., Bünz, S., and Greinert, J.: Thermogenic
methane injection via bubble transport into the upper Arctic Ocean from the
hydrate-charged Vestnesa Ridge, Svalbard, Geochem. Geophy. Geosy.,
15, 1945–1959, https://doi.org/10.1002/2013GC005179, 2014.
Spreen, G., Kwok, R., and Menemenlis, D.: Trends in Arctic sea ice drift and
role of wind forcing: 1992–2009, Geophys. Res. Lett., 38, L19501,
https://doi.org/10.1029/2011GL048970, 2011.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: A research
synthesis, Clim. Change, 110, 1005–1027,
https://doi.org/10.1007/s10584-011-0101-1, 2012.
Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R.: The
thickness distribution of sea ice, J. Geophys. Res., 80, 4501–4513,
https://doi.org/10.1029/JC080i033p04501, 1975.
Thornton, B. F., Geibel, M. C., Crill, P. M., Humborg, C., and Mörth,
C.-M.: Methane fluxes from the sea to the atmosphere across the Siberian
shelf seas, Geophys. Res. Lett., 43, 5869–5877,
https://doi.org/10.1002/2016GL068977, 2016.
Untersteiner, N.: Natural desalination and equilibrium salinity profile of
perennial sea ice, J. Geophys. Res., 73, 1251–1257,
https://doi.org/10.1029/JB073i004p01251, 1968.
Vancoppenolle, M., Meiners, K. M., Michel, C., Bopp, L., Brabant, F.,
Carnat, G., Delille, B., Lannuzel, D., Madec, G., Moreau, S., Tison, J.-L.,
and van der Merwe, P.: Role of sea ice in global biogeochemical cycles:
emerging views and challenges, Quaternary Sci. Rev., 79, 207–230,
https://doi.org/10.1016/j.quascirev.2013.04.011, 2013.
Wåhlström, I. and Meier, H. E. M.: A model sensitivity study for the
sea-air exchange of methane in the Laptev Sea, Arctic Ocean, Tellus
B, 66, 1–18, https://doi.org/10.3402/tellusb.v66.24174, 2014.
Wåhlström, I., Dieterich, C., Pemberton, P., and Meier, H. E. M.:
Impact of increasing inflow of warm Atlantic water on the sea-air exchange
of carbon dioxide and methane in the Laptev Sea, J. Geophys. Res.-Biogeo., 121, 1867–1883, https://doi.org/10.1002/2015JG003307, 2016.
Westbrook, G. K., Thatcher, K. E., Rohling, E. J., Piotrowski, A. M.,
Pälike, H., Osborne, A. H., Nisbet, E. G., Minshull, T. A.,
Lanoisellé, M., James, R. H., Hühnerbach, V., Green, D., Fisher, R.
E., Crocker, A. J., Chabert, A., Bolton, C., Beszczynska-Möller, A.,
Berndt, C., and Aquilina, A.: Escape of methane gas from the seabed along the
West Spitsbergen continental margin, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL039191, 2009.
Wiesenburg, D. A. and Guinasso, N. L.: Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water, J. Chem. Eng. Data, 24, 356–360, https://doi.org/10.1021/je60083a006, 1979.
Wollenburg, J. E., Iversen, M., Katlein, C., Krumpen, T., Nicolaus, M., Castellani, G., Peeken, I., and Flores, H.: New observations of the distribution, morphology and dissolution dynamics of cryogenic gypsum in the Arctic Ocean, The Cryosphere, 14, 1795–1808, https://doi.org/10.5194/tc-14-1795-2020, 2020.
Zamani, B., Krumpen, T., Smedsrud, L. H., and Gerdes, R.: Fram Strait sea ice export affected by thinning: comparing high-resolution simulations and observations, Clim. Dynam., 53, 3257–3270, https://doi.org/10.1007/s00382-019-04699-z, 2019.
Zhou, J., Tison, J.-L., Carnat, G., Geilfus, N.-X., and Delille, B.: Physical controls on the storage of methane in landfast sea ice, The Cryosphere, 8, 1019–1029, https://doi.org/10.5194/tc-8-1019-2014, 2014.
Short summary
We show that the ice structures determine the fate of methane during the early melt season and that sea ice may act as a sink of methane when methane oxidation occurs in specific layers of thick and complex sea ice. In spring, when ice melt starts, sea ice methane released into the ocean is the favored pathway. We suggest that changes in ice cover are thus likely to change the methane pathways in the Arctic Ocean and sea ice as a potential source of methane supersaturation in surface waters.
We show that the ice structures determine the fate of methane during the early melt season and...