Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-2083-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2083-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier
Tobias Reiner Vonnahme
CORRESPONDING AUTHOR
Department of Arctic and Marine Biology, UiT The Arctic University
of Norway, Tromsø, Norway
Emma Persson
Department of Arctic and Marine Biology, UiT The Arctic University
of Norway, Tromsø, Norway
Ulrike Dietrich
Department of Arctic and Marine Biology, UiT The Arctic University
of Norway, Tromsø, Norway
Eva Hejdukova
Department of Ecology, Faculty of Science, Charles University,
Prague, Czech Republic
Christine Dybwad
Department of Arctic and Marine Biology, UiT The Arctic University
of Norway, Tromsø, Norway
Josef Elster
Centre for Polar Ecology, University of South Bohemia, České Budějovice, Czech Republic
Institute of Botany ASCR, Třeboň, Czech Republic
Melissa Chierici
Institute of Marine Research, Tromsø, Norway
University Centre in Svalbard (UNIS), Longyearbyen, Svalbard
Rolf Gradinger
Department of Arctic and Marine Biology, UiT The Arctic University
of Norway, Tromsø, Norway
Related authors
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021, https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary
Short summary
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by nutrients and light. At the end of the bloom, inorganic nitrogen or silicon can be limiting, but nitrogen can be regenerated by bacteria, extending the algal growth phase. Modeling these multi-nutrient dynamics and the role of bacteria is challenging yet crucial for accurate modeling. We recreated spring bloom dynamics in a cultivation experiment and developed a representative dynamic model.
Massimiliano Molari, Felix Janssen, Tobias R. Vonnahme, Frank Wenzhöfer, and Antje Boetius
Biogeosciences, 17, 3203–3222, https://doi.org/10.5194/bg-17-3203-2020, https://doi.org/10.5194/bg-17-3203-2020, 2020
Short summary
Short summary
Industrial-scale mining of deep-sea polymetallic nodules will remove nodules in large areas of the sea floor. We describe community composition of microbes associated with nodules of the Peru Basin. Our results show that nodules provide a unique ecological niche, playing an important role in shaping the diversity of the benthic deep-sea microbiome and potentially in element fluxes. We believe that our findings are highly relevant to expanding our knowledge of the impact associated with mining.
Maria G. Digernes, Yasemin V. Bodur, Martí Amargant-Arumí, Oliver Müller, Jeffrey A. Hawkes, Stephen G. Kohler, Ulrike Dietrich, Marit Reigstad, and Maria Lund Paulsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1314, https://doi.org/10.5194/egusphere-2024-1314, 2024
Short summary
Short summary
Dissolved (DOM) and particulate organic matter (POM) are in constant exchange, but usually studied as distinct entities. We investigated the dynamics between POM and DOM in a sub-Arctic fjord across different seasons by conducting bi-monthly aggregation-dissolution experiments. During the productive period, POM concentrations increased in the experiment while DOM molecules became more recalcitrant. During the winter period, POM concentrations decreased whereas DOM molecules became more labile.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021, https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary
Short summary
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by nutrients and light. At the end of the bloom, inorganic nitrogen or silicon can be limiting, but nitrogen can be regenerated by bacteria, extending the algal growth phase. Modeling these multi-nutrient dynamics and the role of bacteria is challenging yet crucial for accurate modeling. We recreated spring bloom dynamics in a cultivation experiment and developed a representative dynamic model.
Massimiliano Molari, Felix Janssen, Tobias R. Vonnahme, Frank Wenzhöfer, and Antje Boetius
Biogeosciences, 17, 3203–3222, https://doi.org/10.5194/bg-17-3203-2020, https://doi.org/10.5194/bg-17-3203-2020, 2020
Short summary
Short summary
Industrial-scale mining of deep-sea polymetallic nodules will remove nodules in large areas of the sea floor. We describe community composition of microbes associated with nodules of the Peru Basin. Our results show that nodules provide a unique ecological niche, playing an important role in shaping the diversity of the benthic deep-sea microbiome and potentially in element fluxes. We believe that our findings are highly relevant to expanding our knowledge of the impact associated with mining.
Mark J. Hopwood, Dustin Carroll, Thorben Dunse, Andy Hodson, Johnna M. Holding, José L. Iriarte, Sofia Ribeiro, Eric P. Achterberg, Carolina Cantoni, Daniel F. Carlson, Melissa Chierici, Jennifer S. Clarke, Stefano Cozzi, Agneta Fransson, Thomas Juul-Pedersen, Mie H. S. Winding, and Lorenz Meire
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, https://doi.org/10.5194/tc-14-1347-2020, 2020
Short summary
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
Related subject area
Discipline: Other | Subject: Arctic (e.g. Greenland)
Characterizing Southeast Greenland fjord surface ice and freshwater flux to support biological applications
Trends and spatial variation in rain-on-snow events over the Arctic Ocean during the early melt season
Arctic freshwater fluxes: sources, tracer budgets and inconsistencies
Dynamic ocean topography of the northern Nordic seas: a comparison between satellite altimetry and ocean modeling
Twila A. Moon, Benjamin Cohen, Taryn E. Black, Kristin L. Laidre, Harry Stern, and Ian Joughin
EGUsphere, https://doi.org/10.5194/egusphere-2024-184, https://doi.org/10.5194/egusphere-2024-184, 2024
Short summary
Short summary
The complex geomorphology of Southeast Greenland (SEG) creates dynamic fjord habitats for marine top predators, with glacier-derived floating ice, pack and landfast sea ice, and freshwater flux. We investigate the SEG fjord physical environment, with focus on surface ice conditions, to provide a regional characterization to support biological research. As Arctic warming continues, SEG may serve as a long-term refugia for ice-dependent wildlife due to projected regional ice sheet persistence.
Tingfeng Dou, Cunde Xiao, Jiping Liu, Qiang Wang, Shifeng Pan, Jie Su, Xiaojun Yuan, Minghu Ding, Feng Zhang, Kai Xue, Peter A. Bieniek, and Hajo Eicken
The Cryosphere, 15, 883–895, https://doi.org/10.5194/tc-15-883-2021, https://doi.org/10.5194/tc-15-883-2021, 2021
Short summary
Short summary
Rain-on-snow (ROS) events can accelerate the surface ablation of sea ice, greatly influencing the ice–albedo feedback. We found that spring ROS events have shifted to earlier dates over the Arctic Ocean in recent decades, which is correlated with sea ice melt onset in the Pacific sector and most Eurasian marginal seas. There has been a clear transition from solid to liquid precipitation, leading to a reduction in spring snow depth on sea ice by more than −0.5 cm per decade since the 1980s.
Alexander Forryan, Sheldon Bacon, Takamasa Tsubouchi, Sinhué Torres-Valdés, and Alberto C. Naveira Garabato
The Cryosphere, 13, 2111–2131, https://doi.org/10.5194/tc-13-2111-2019, https://doi.org/10.5194/tc-13-2111-2019, 2019
Short summary
Short summary
We compare control volume and geochemical tracer-based methods of estimating the Arctic Ocean freshwater budget and find both methods in good agreement. Inconsistencies arise from the distinction between
Atlanticand
Pacificwaters in the geochemical calculations. The definition of Pacific waters is particularly problematic due to the non-conservative nature of the nutrients underpinning the definition and the low salinity characterizing waters entering the Arctic through Bering Strait.
Felix L. Müller, Claudia Wekerle, Denise Dettmering, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
The Cryosphere, 13, 611–626, https://doi.org/10.5194/tc-13-611-2019, https://doi.org/10.5194/tc-13-611-2019, 2019
Short summary
Short summary
Knowledge of the dynamic ocean topography (DOT) enables studying changes of ocean surface currents. The DOT can be derived by satellite altimetry measurements or by models. However, in polar regions, altimetry-derived sea surface heights are affected by sea ice. Model representations are consistent but impacted by the underlying functional backgrounds and forcing models. The present study compares results from both data sources in order to investigate the potential for a combination of the two.
Cited articles
Ambrožová, K. and Láska, K.: Air temperature variability in the
vertical profile over the coastal area of Petuniabukta, central Spitsbergen,
Pol. Polar Res., 38, 41–60, https://doi.org/10.1515/popore-2017-0004, 2017.
Amundson, J. M. and Carroll, D.: Effect of topography on subglacial
discharge and submarine melting during tidewater glacier retreat,
J. Geophys. Res.-Earth, 123, 66–79, 2018.
Ardyna, M., Mundy, C. J., Mills, M. M., Oziel, L., Grondin, P. L., Lacour,
L., Verin, G., Van Dijken, G., Ras, J., Alou-Font, E., Babin, M., Gosselin,
M., Tremblay, J. É., Raimbault, P., Assmy, P., Nicolaus, M., Claustre,
H., and Arrigo, K. R.: Environmental drivers of under-ice phytoplankton bloom
dynamics in the Arctic Ocean, Elementa, 8, 30,
https://doi.org/10.1525/elementa.430, 2020.
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken, G.
L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates,
N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E.,
Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell,
G. B., Moore, G. W. K., Ortega-Retuerta, E., Pal, S., Polashenski, C. M.,
Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M. P., and Swift, J.
H.: Massive phytoplankton blooms under Arctic sea ice, Science, 336, 1408,
https://doi.org/10.1126/science.1215065, 2012.
Arrigo, K. R., Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W.,
van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M.,
Bates, N. R., Benitez-Nelson, C. R., Brownlee, E., Frey, K. E., Laney, S.
R., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W. K., Reynolds, R.
A., Sosik, H. A., and Swift, J. H.: Phytoplankton blooms beneath the sea ice in the Chukchi Sea, Deep-Sea Res. Pt. II, 105, 1–16,
https://doi.org/10.1016/j.dsr2.2014.03.018, 2014.
Arst, H. and Sipelgas, L.: In situ and satellite investigations of optical
properties of the ice cover in the Baltic Sea region, in: Proceedings of the
Estonian Academy of Sciences, Biology and Ecology, edited by: Aben, H. and
Kurnitski, V., Estonian Academy of Sciences, Tallinn, Estonia, 25–36, 2004.
Assmy, P., Ehn, J. K., Fernández-Méndez, M., Hop, H., Katlein, C.,
Sundfjord, A., Bluhm, K., Daaase, M., Engel, A., Fransson, A., Granskog, M.
A., Hudson, S. R., Kristiansen, S., Nicolaus, M., Peeken, I., Renner, A. H.
H., Spreen, G., Tatarek, A., and Wiktor, J.: Floating ice-algal aggregates
below melting Arctic sea ice, PLoS ONE, 8, e76599,
https://doi.org/10.1371/journal.pone.0076599, 2013.
Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J., Olsen, L. M., Kauko, H. M., Bailey, A., and Chierici, M.: Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice, Sci. Rep.-UK, 7, 40850, https://doi.org/10.1038/srep40850, 2017.
Atienza, S., Guardiola, M., Præbel, K., Antich, A., Turon, X., and
Wangensteen, O. S.: DNA Metabarcoding of Deep-Sea Sediment Communities Using
COI: Community Assessment, Spatio-Temporal Patterns and Comparison with 18S
rDNA, Diversity, 12, 123, https://doi.org/10.3390/d12040123, 2020.
Azetsu-Scott, K. and Syvitski, J. P. M.: Influence of melting icebergs on
distribution, characteristics and transport of marine particles in an East
Greenland fjord, J. Geophys. Res., 104, 5321–5328, 1999.
Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P.
B., and Charette, M. A.: Greenland meltwater as a significant and
potentially bioavailable source of iron to the ocean, Nat. Geosci., 6,
274–278, https://doi.org/10.1038/ngeo1746, 2013.
Bintanja, R., van der Wiel, K., Van der Linden, E. C., Reusen, J., Bogerd,
L., Krikken, F., and Selten, F. M.: Strong future increases in Arctic
precipitation variability linked to 2226 poleward moisture transport, Sci.
Adv., 6, eaax6869, https://doi.org/10.1126/sciadv.aax6869, 2020.
Błaszczyk, M., Jania, J. A., and Hagen, J. O.: Tidewater glaciers of
Svalbard: Recent changes and estimates of calving fluxes, Pol. Polar Res., 2,
85–142, 2009.
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., and Coissac,
E.: obitools: A unix-inspired software package for DNA
metabarcoding, Mol. Ecol. Resour., 16, 176–182, https://doi.org/10.1111/1755-0998.12428, 2016.
Braaten, D. A.: A detailed assessment of snow accumulation in katabatic wind
areas on the Ross Ice Shelf, Antarctica, J. Geophys. Res.-Atmos., 102,
30047–30058, https://doi.org/10.1029/97JD02337, 1997.
Cantoni, C., Hopwood, M. J., Clarke, J. S., Chiggiato, J., Achterberg, E.
P., and Cozzi, S.: Glacial drivers of marine biogeochemistry indicate a
future shift to more corrosive conditions in an Arctic fjord,
J. Geophys. Res.-Biogeo., 125, e2020JG005633, https://doi.org/10.1029/2020JG005633, 2020.
Cape, M. R., Straneo, F., Beaird, N., Bundy, R. M., and Charette, M. A.: Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers, Nature, 12, 34–39, 2019.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noël, B. P. Y., and van den Broeke, M. R.: The impact of glacier
geometry on meltwater plume structure and submarine melt in Greenland
fjords, Geophys. Res. Lett., 43, 9739–9748,
https://doi.org/10.1002/2016GL070170, 2016.
Chandler, D. M., Wadham, J. L., Lis, G. P., Cowton, T., Sole, A.,
Bartholomew, I., Telling, J., Nienow, P., Bagshaw, E. B., Mair, D., Vinen,
S., and Hubbard A.: Evolution of the subglacial drainage system beneath the
Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198,
https://doi.org/10.1038/ngeo1737, 2013.
Christman, G. D., Cottrell, M. T., Popp, B. N., Gier, E., and Kirchman, D.
L.: Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in
the coastal Arctic Ocean in summer and winter, Appl. Environ. Microb.,
77, 2026–2034, https://doi.org/10.1128/AEM.01907-10, 2011.
Cloern, J. E., Grenz, C., and Vidergar-Lucas, L.: An empirical model of the
phytoplankton chlorophyll: carbon ratio-the conversion factor between
productivity and growth rate, Limnol. Oceanogr., 40, 1313–1321,
https://doi.org/10.4319/lo.1995.40.7.1313, 1995.
Cox, G. F. and Weeks, W. F.: Equations for determining the gas and brine
volumes in sea-ice samples, J. Glaciol., 29, 306–316,
https://doi.org/10.3189/S0022143000008364, 1983.
de Kluijver, A., Soetaert, K., Czerny, J., Schulz, K. G., Boxhammer, T., Riebesell, U., and Middelburg, J. J.: A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels, Biogeosciences, 10, 1425–1440, https://doi.org/10.5194/bg-10-1425-2013, 2013.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurements, North Pacific Marine Science Organization, Sidney, British Columbia, 2007.
Dowdeswell, J. A.: On the nature of Svalbard icebergs, J. Glaciol., 35,
224–234, https://doi.org/10.3189/S002214300000455X, 1989.
Egge, J. K. and Aksnes, D. L.: Silicate as regulating nutrient in
phytoplankton competition, Mar. Ecol. Prog. Ser., 83, 281–289,
https://doi.org/10.3354/meps083281, 1992.
Esau, I. and Repina, I.: Wind climate in Kongsfjorden, Svalbard, and
attribution of leading wind driving mechanisms through turbulence-resolving
simulations, Adv. Meteorol., 2012, 568454, https://doi.org/10.1155/2012/568454, 2012.
Fofonoff, P. and Millard R. C.: Algorithms for computation of fundamental
properties of seawater, Unesco Technical Papers in Marine Science 44, UNESCO, Paris, France, 53 pp., available at: http://hdl.handle.net/11329/109 (last access: 20 January 2021), 1983.
Fortier, M., Fortier, L., Michel, C., and Legendre, L.: Climatic and
biological forcing of the vertical flux of biogenic particles under seasonal
Arctic sea ice, Mar. Ecol. Prog. Ser., 225, 1–16,
https://doi.org/10.3354/meps225001, 2002.
Fransson, A., Chierici, M., Nomura, D., Granskog, M. A., Kristiansen, S., Martma, T., and Nehrke, G.: Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater‐glacier fjord during two contrasting years, J. Geophys. Res.-Oceans, 120, 2413–2429, 2015.
Fransson, A., Chierici, M., Skjelvan, I., Olsen, A., Assmy, P., Peterson,
A., Spreen, G., and Ward, B.: Effect of sea-ice and biogeochemical processes
and storms on under-ice water fCO2 during the winter-spring transition in thehigh Arctic Ocean: implications for sea-air CO2 fluxes, J. Geophys. Res.-Oceans, 122, 5566–5587, https://doi.org/10.1002/2016JC012478, 2017.
Fransson, A., Chierci, M., Nomura, D., Granskog, M. A., Kristiansen, S.,
Martma, T., and Nehrke, G.: Influence of glacialwater and carbonate minerals
on wintertime sea-ice biogeochemistry and the CO2 system in an Arctic fjord in Svalbard, Ann. Glaciol., 1–21,
https://doi.org/10.1017/aog.2020.52, 2020.
Furnas, M. J.: In situ growth rates of marine phytoplankton: approaches to
measurement, community and species growth rate, J. Plankton Res., 12,
1117–1151, 1990.
Garrison, D. L. and Buck, K. R.: Organism losses during ice melting: a
serious bias in sea ice community studies, Polar Biol., 6, 237–239, 1986.
Golden, K. M., Ackley, S. F., and Lytle, V. I.: The percolation phase
transition in sea ice, Science, 282, 2238–2241,
https://doi.org/10.1126/science.282.5397.2238, 1998.
Gradinger, R.: Sea Ice Microorganisms, in: Encyclopedia of Environmental Microbiology, edited by: Bitton, G., John Wiley & Sons Inc., New York, USA, https://doi.org/10.1002/0471263397.env310, 2003.
Gradinger, R.: Sea-ice algae: Major contributors to primary production and
algal biomass in the Chukchi and Beaufort Seas during May/June 2002, Deep-Sea Res. Pt. II, 56, 1201–1212, https://doi.org/10.1016/j.dsr2.2008.10.016, 2009.
Granskog, M. A., Kaartokallio, H., and Shirasawa, K.: Nutrient status of
Baltic Sea ice: Evidence for control by snow-ice formation, ice
permeability, and ice algae, J. Geophys. Res.-Oceans, 108, 3253,
https://doi.org/10.1029/2002JC001386, 2003.
Guardiola, M., Uriz, M. J., Taberlet, P., Coissac, E., Wangensteen, O. S.,
and Turon, X.: Deep-sea, deep-sequencing: metabarcoding extracellular DNA
from sediments of marine canyons, PLoS ONE, 10, e0139633, https://doi.org/10.1371/journal.pone.0139633, 2015.
Haecky, P. and Andersson, A.: Primary and bacterial production in sea ice
in the northern Baltic Sea, Aquat. Microb. Ecol., 20, 107–118,
https://doi.org/10.3354/ame020107, 1999.
Hagen, J. O., Liestøl, O., Roland, E., and Jørgensen, T.: Glacier
Atlas of Svalbard and Jan Mayen, Norwegian Polar Institute, Oslo, Norway, 1993.
Halbach, L., Vihtakari, M., Duarte, P., Everett, A., Granskog, M. A., Hop,
H., Kauko, H. M., Kristiansen, S., Myhre, P. I., Pavlov, A. K., Pramanik,
A., Tatarek, A., Torsvik, T., Wiktor, J. M., Wold, A., Wulff, A., Steen, H.,
and Assmy, P.: Tidewater glaciers and bedrock characteristics control the
phytoplankton growth environment in a fjord in the arctic, Front. Mar. Sci., 6, 254, https://doi.org/10.3389/fmars.2019.00254, 2019.
Hatton, J. E., Hendry, K. R., Hawkings, J. R., Wadham, J. L., Kohler, T. J.,
Stibal, M., Beaton, A. D., Bagshaw, E. A., and Telling, J.: Investigation of
subglacial weathering under the Greenland Ice Sheet using silicon isotopes,
Geochim. Cosmochim. Ac., 247, 191–206, https://doi.org/10.1016/j.gca.2018.12.033,
2019.
Hawkings, J. R., Wadham, J. L., Benning, L. G., Hendry, K. R., Tranter, M.,
Tedstone, A., Nienow, P., and Raiswell, R.: Ice sheets as a missing source
of silica to the polar oceans, Nat. Commun., 8, 14198,
https://doi.org/10.1038/ncomms14198, 2017.
Hegseth, E. N., Assmy, P., Wiktor, J. M., Wiktor, J., Kristiansen, S., Leu,
E., Tverberg, V., Gabrielsen, T. M., Skogseth, R., and Cottier, F.:
Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent
shelf, in: The Ecosystem of Kongsfjorden, Svalbard, edited by: Hop, H. and
Wiencke, C., Springer, Cham, Switzerland, 173–227, 2019.
Hodal, H., Falk-Petersen, S., Hop, H., Kristiansen, S., and Reigstad, M.:
Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton,
protozoans and primary production, Polar Biol., 35, 191–203,
https://doi.org/10.1007/s00300-011-1053-7, 2012.
Hodgkins, R.: Glacier hydrology in Svalbard, Norwegian high arctic,
Quaternary Sci. Rev., 16, 957–973, https://doi.org/10.1016/S0277-3791(97)00032-2, 1997.
Holmes, F. A., Kirchner, N., Kuttenkeuler, J., Krützfeldt, J., and
Noormets, R.: Relating ocean temperatures to frontal ablation rates at
Svalbard tidewater glaciers: Insights from glacier proximal datasets,
Sci. Rep.-UK, 9, 9442, https://doi.org/10.1038/s41598-019-45077-3, 2019.
Hopwood, M. J., Carroll, D., Dunse, T., Hodson, A., Holding, J. M., Iriarte, J. L., Ribeiro, S., Achterberg, E. P., Cantoni, C., Carlson, D. F., Chierici, M., Clarke, J. S., Cozzi, S., Fransson, A., Juul-Pedersen, T., Winding, M. H. S., and Meire, L.: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?, The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, 2020.
Irvine-Fynn, T. D., Hodson, A. J., Moorman, B. J., Vatne, G., and Hubbard,
A. L.: Polythermal glacier hydrology: A review, Rev. Geophys.,
49, RG4002, https://doi.org/10.1029/2010RG000350, 2011.
Iversen, K. R. and Seuthe, L.: Seasonal microbial processes in a
high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria,
picoplankton and nanoflagellates, Polar Biol., 34, 731–749,
https://doi.org/10.1007/s00300-010-0929-2, 2011.
Jones, E., Chierici, M., Skjelvan, I., Norli, M., Børsheim, K. Y.,
Lødemel, H. H., Sørensen, K., King, A. L., Lauvset, S., Jackson, K.,
de Lange, T., Johannsessen, T., and Mourgues, C.: Monitoring ocean
acidification in Norwegian seas in 2018, Miljødirektoratet, Report,
M-1417-2019, available at: https://www.miljodirektoratet.no/globalassets/publikasjoner/m1417/m1417.pdf (last access: 19 April 2021), 2019.
Kanna, N., Sugiyama, S., Ohashi, Y., Sakakibara, D., Fukamachi, Y., and
Nomura, D.: Upwelling of macronutrients and dissolved inorganic carbon by a
subglacial freshwater driven plume in Bowdoin Fjord, northwestern Greenland,
J. Geophys. Res.-Biogeo., 123, 1666–1682, https://doi.org/10.1029/2017JG004248, 2018.
Kartverket: available at: https://kartkatalog.geonorge.no/metadata/kartverket/dybdedata/2751aacf-5472-4850-a208-3532a51c529a, last access: 10 August 2020.
Kirchman, D. L., Malmstrom, R. R., and Cottrell, M. T.: Control of bacterial
growth by temperature and organic matter in the Western Arctic,
Deep-Sea Res. Pt. II, 52, 3386–3395, 2005.
Kowalik, Z., Marchenko, A., Brazhnikov, D., and Marchenko, N.: Tidal
currents in the western Svalbard Fjords, Oceanologia, 57, 318–327,
https://doi.org/10.1016/j.oceano.2015.06.003, 2015.
Krisch, S., Browning, T. J., Graeve, M., Ludwichowski, K. U., Lodeiro, P.,
Hopwood, M. J., Roig, S., Yong, J. C., Kanzow, T., and Achterberg, E. P.:
The Influence of Arctic Fe and Atlantic Fixed N on Summertime Primary
Production in Fram Strait, North Greenland Sea, Sci. Rep.-UK, 10, 15230,
https://doi.org/10.1038/s41598-020-72100-9, 2020.
Láska, K., Witoszová, D., and Prošek, P.: Weather patterns of
the coastal zone of Petuniabukta, central Spitsbergen in the period
2008-
Leppäranta, M. and Manninen, T.: The brine and gas content of sea ice
with attention to low salinities and high temperatures, Internal Report, Finnish Institute of Marine Research, Helsinki, Finland, 1–15, 1988.
Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin,
M., Juul-Pedersen, T., and Gradinger, R.: Arctic spring awakening – Steering
principles behind the phenology of vernal ice algal blooms, Prog. Oceanogr.,
139, 151–170, https://doi.org/10.1016/j.pocean.2015.07.012, 2015.
Lowry, K. E., Pickart, R. S., Selz, V., Mills, M. M., Pacini, A., Lewis, K.
M., Joy-Warren, H., Nobre, C., van Dijken, G. L., Grondin, P., Ferland, J.,
and Arrigo, K. R.: Under-ice phytoplankton blooms inhibited by spring
convective mixing in refreezing leads, J. Geophys. Res.-Oceans, 123, 90–109,
https://doi.org/10.1002/2016JC012575, 2018.
Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M.,
Reigstad, M., Stehen, H., Strøm, H., Sundfjord, A., Varpe, Ø.,
Walczowski, W., Weslawski, K. M., and Zajaczkowski, M.: The importance of
tidewater glaciers for marine mammals and seabirds in Svalbard, Norway,
J. Marine Syst., 129, 452–471, https://doi.org/10.1016/j.jmarsys.2013.09.006, 2014.
Maes, S.: Polar cod population structure: connectivity in a changing
ecosystem, PhD thesis, KU Leuven, Leuven, Belgium, 2017.
Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M.:
Swarm: robust and fast clustering method for amplicon-based studies, PeerJ,
2, e593, https://doi.org/10.7717/peerj.593, 2014.
Massicotte, P., Bécu, G., Lambert-Girard, S., Leymarie, E., and Babin,
M.: Estimating underwater light regime under spatially heterogeneous sea ice
in the Arctic, Appl. Sci., 8, 2693, https://doi.org/10.3390/app8122693, 2018.
Meire, L., Meire, P., Struyf, E., Krawczyk, D. W., Arendt, K. E., Yde, J.
C., Juul Pedersen, T., Hopwood, M. J., Rysgaard, S., and Meysman, F. J. R.:
High export of dissolved silica from the Greenland Ice Sheet, Geophys. Res.
Lett., 43, 9173–9182, https://doi.org/10.1002/2016GL070191, 2016a.
Meire, L., Mortensen, J., Rysgaard, S., Bendtsen, J., Boone, W., Meire, P.,
and Meysman, F. J.: Spring bloom dynamics in a subarctic fjord influenced by
tidewater outlet glaciers (Godthåbsfjord, SW Greenland), J. Geophys. Res.-Biogeo., 121, 1581–1592, https://doi.org/10.1002/2015JG003240, 2016b.
Meslard, F., Bourrin, F., Many, G., and Kerhervé, P.: Suspended particle
dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard), Estuar. Coast. Shelf S., 204, 212–224, https://doi.org/10.1016/j.ecss.2018.02.020, 2018.
Mikkelsen, D. M., Rysgaard, S., and Glud, R. N.: Microalgal composition and primaryproduction in Arctic sea ice: a seasonal study from Kobbeijord(Kangerluarsunnguaq), West Greenland, Mar. Ecol. Prog. Ser., 368, 65–74, 2008.
Mock, T. and Gradinger, R.: Determination of Arctic ice algal production
with a new in situ incubation technique, Mar. Ecol. Prog. Ser., 177, 15–26,
https://doi.org/10.3354/meps177015, 1999.
Molari, M., Manini, E., and Dell'Anno, A.: Dark inorganic carbon fixation
sustains the functioning of benthic deep-sea ecosystems,
Global Biogeochem. Cy., 27, 212–221, https://doi.org/10.1002/gbc.20030, 2013.
Moon, T., Sutherland, D. A., Carroll, D., Felikson, D., Kehrl, L., and
Straneo, F.: Subsurface iceberg melt key to Greenland fjord freshwater
budget, Nat. Geosci., 11, 49–54, https://doi.org/10.1038/s41561-017-0018-z, 2018.
Mortensen, J., Rysgaard, S., Bendtsen, J., Lennert, K., Kanzow, T., Lund,
H., and Meire, L.: Subglacial Discharge and Its Down-Fjord Transformation in
West Greenland Fjords With an Ice Mélange, J. Geophys. Res.-Oceans, 125, e2020JC016301, https://doi.org/10.1029/2020JC016301, 2020.
Moskalik, M., Ćwiąkała, J., Szczuciński, W., Dominiczak, A.,
Głowacki, O., Wojtysiak, K., and Zagórski, P: Spatiotemporal changes
in the concentration and composition of suspended particulate matter in
front of Hansbreen, a tidewater glacier in Svalbard, Oceanologia, 60,
446–463, 2018.
Mundy, C. J., Barber, D. G., and Michel, C.: Variability of snow and ice
thermal, physical and optical properties pertinent to sea ice algae biomass
during spring, J. Marine Syst., 58, 107–120,
https://doi.org/10.1016/j.jmarsys.2005.07.003, 2005.
Mundy, C. J., Gosselin, M., Ehn, J., Gratton, Y., Rossnagel, A., Barber, D.
G., Martin, J., Tremblay, J., Palmer, M., Arrigo, K. R., Darnis, G.,
Fortier, L., Else, B., and Papakyriokou, T.: Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea, Geophys. Res. Lett, 36, L17601, https://doi.org/10.1029/2009GL038837,
2009.
Natural Earth: available at: http://www.naturalearthdata.com/, last access: 10 August 2020.
Norwegian Polar Institute: Toposvalbard, available at: https://toposvalbard.npolar.no, last access: 16 September 2020.
Pabi, S., van Dijken, G. L., and Arrigo, K. R.: Primary production in the
Arctic Ocean 1998–2006, J. Geophys. Res.-Oceans, 113, C08005,
https://doi.org/10.1029/2007JC004578, 2008.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters:
assessing small subunit rRNA primers for marine microbiomes with mock
communities, time series and global field samples, Environ. Microbiol.,
18, 1403–1414, https://doi.org/10.1111/1462-2920.13023, 2016.
Parsons, T. R., Maita, Y., and Lalli, C. M.: A Manual of Chemical and
Biological Methods for Seawater Analysis, Pergamon Press, Toronto, USA, 1984.
Pavlov, A. K., Leu, E., Hanelt, D., Bartsch, I., Karsten, U., Hudson, S. R.,
Gallet, J., Cottier, F., Cohen, J. H., Berge, J., Johnsen, G., Maturilli,
M., Kowalczuk, P., Sagan, S., Meler, J., and Granskog, M. A.: The underwater
light climate in Kongsfjorden and its ecological implications, in: The
Ecosystem of Kongsfjorden, Svalbard, edited by: Hop, H. and Wiencke, C.,
Springer, Cham, Switzerland, 137–170, 2019.
Perovich, D. K., Roesler, C. S., and Pegau, W. S.: Variability in Arctic sea
ice optical properties, J. Geophys. Res.-Oceans, 103, 1193–1208,
https://doi.org/10.1029/97JC01614, 1998.
Porter, K. G. and Feig, Y. S.: The use of DAPI for identifying and counting
aquatic microflora1, Limnol. Oceanogr., 25, 943–948,
https://doi.org/10.4319/lo.1980.25.5.0943, 1980.
Pruesse, E., Peplies, J., and Glöckner, F. O.: SINA: accurate
high-throughput multiple sequence alignment of ribosomal RNA genes,
Bioinformatics, 28, 1823–1829, 2012.
Ptacnik, R., Andersen, T., and Tamminen, T.: Performance of the Redfield
ratio and a family of nutrient limitation indicators as thresholds for
phytoplankton N vs. P limitation, Ecosystems, 13, 1201–1214,
https://doi.org/10.1007/s10021-010-9380-z, 2010.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Replies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database
project: improved data processing and web-based
tools, Nucleic Acids Res., 41, 590–596, 2012.
Redfield, A. C.: On the proportions of organic derivatives in sea water and
their relation to the composition of plankton, in: James Johnstone Memorial
Volume, Liverpool University Press, Liverpool, UK, 176–192, 1934.
Rich, J., Gosselin, M., Sherr, E., Sherr, B., and Kirchman, D. L.: High
bacterial production, uptake and concentrations of dissolved organic matter
in the Central Arctic Ocean, Deep-Sea Res. Pt. II, 44, 1645–1663, 1997.
Schaffer, J., Kanzow, T., von Appen, W. J., von Albedyll, L., Arndt, J.
E., and Roberts, D. H.: Bathymetry Constrains Ocean Heat Supply to Greenland's Largest Glacier Tongue, Nat. Geosci, 13, 227–231,
https://doi.org/10.1038/s41561-019-0529-x, 2020.
Schoof, C., Rada, C. A., Wilson, N. J., Flowers, G. E., and Haseloff, M.: Oscillatory subglacial drainage in the absence of surface melt, The Cryosphere, 8, 959–976, https://doi.org/10.5194/tc-8-959-2014, 2014.
Skogseth, R., Olivier, L. L., Nilsen, F., Falck, E., Fraser, N., Tverberg,
V., Ledang, A. B., Vader, A., Jonassen, M. O., Søreide, J., Cottier, F.,
Berge, J., Ivanov, B. V., and Falk-Petersen, S.: Variability and decadal
trends in the Isfjorden (Svalbard) ocean climate and circulation – an
indicator for climate change in the European Arctic, Prog. Oceanogr., 187,
102394, https://doi.org/10.1016/j.pocean.2020.102394, 2020.
Southwood, T. R. E. and Henderson, P. A.: Ecological methods,
John Wiley & Sons Inc., 269 pp., 2000.
Strzelecki, M. C.: Schmidt hammer tests across a recently deglacierized
rocky coastal zone in Spitsbergen – is there a “coastal amplification” of rock weathering in polar climates?, Pol. Polar Res., 32, 239–252,
https://doi.org/10.2478/v10183-011-0017-5, 2011.
Sutherland, D. A., Pickart, R. S., Peter Jones, E., Azetsu-Scott, K., Jane Eert, A., and Ólafsson, J.: Freshwater composition of the waters off
southeast Greenland and their link to the Arctic Ocean, J. Geophys. Res.-Oceans, 114, C05020, https://doi.org/10.1029/2008JC004808, 2009.
Throndsen, J., Hasle, G. R., and Tangen, K.: Phytoplankton of
Norwegian coastal waters, Almater Forlag AS, Oslo, Norway, 341 pp.,
2007.
Tomas, C. R.: Identifying Marine Phytoplankton, Elsevier, San Diego,
USA, 1997.
Utermöhl, H.: Methods of collecting plankton for various purposes are
discussed, SIL Commun., 9, 1–38, https://doi.org/10.1080/05384680.1958.11904091, 1958.
Van De Poll, W. H., Kulk, G., Rozema, P. D., Brussaard, C. P. D., Visser, R.
J. W., and Buma, A. G. J.: Contrasting Glacial Meltwater Effects on Post-Bloom Phytoplankton on Temporal and Spatial Scales in Kongsfjorden, Spitsbergen, Elementa, 6, 50, https://doi.org/10.1525/elementa.307, 2018.
Vihtakari, M.: PlotSvalbard – Plot research data from Svalbard
on maps, R package version 0.9.2,
available at: https://github.com/MikkoVihtakari/PlotSvalbard (last access: 20 January 2021), 2020.
Vonnahme, T. R., Devetter, M., Žárský, J. D., Šabacká, M., and Elster, J.: Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard, Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, 2016.
Vonnahme, T. R., Persson, E., Dietrich, U., Hejdukova, E., Dybwad, C., Chierci, M., and Dubourg, P.: Replication data for: Subglacial upwelling in spring increases under-ice primary production, version V2, DataverseNO, UNF:6:MLV0H3Vgb9Fym3EfSnAsqg==, https://doi.org/10.18710/MTPR9E, 2020.
Vonnahme, T. R., Dietrich, U., Dybwad, C., and Hejdukova, E.: Microbial communities, activities, drivers, and fluxes in a shallow tidewater influenced fjord, Billefjorden, available at: https://www.researchinsvalbard.no/project/7643, last access: 20 January 2021.
von Quillfeldt, C. H.: Common diatom species in Arctic spring blooms: their
distribution and abundance, Bot. Mar., 43, 499–516,
https://doi.org/10.1515/BOT.2000.050, 2000.
von Quillfeldt, C. H., Ambrose, W. G., and Clough, L. M.: High number of
diatom species in first-year ice from the Chukchi Sea, Polar Biol., 26,
806–818, https://doi.org/10.1007/s00300-003-0549-1, 2003.
Wadham, J. L., Hodgkins, R., Cooper, R. J., and Tranter, M.: Evidence for
seasonal subglacial outburst events at a polythermal glacier,
Finsterwalderbreen, Svalbard, Hydrol. Process., 15, 2259–2280,
https://doi.org/10.1002/hyp.178, 2001.
Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R.: Naive Bayesian
Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial
Taxonomy, Appl. Environ. Microb., 73, 5261–5267, https://doi.org/10.1128/AEM.00062-07, 2007.
Wangensteen, O. S., Palacín, C., Guardiola, M., and Turon, X.: DNA
metabarcoding of littoral hard-bottom communities: high diversity and
database gaps revealed by two molecular markers, PeerJ, 6, e4705,
https://doi.org/10.7717/peerj.4705, 2018.
Wiedmann, I., Reigstad, M., Marquardt, M., Vader, A., and Gabrielsen, T. M.:
Seasonality of vertical flux and sinking particle characteristics in an
ice-free high arctic fjord – Different from subarctic fjords?, J. Marine Syst., 154, 192–205, https://doi.org/10.1016/j.jmarsys.2015.10.003, 2016.
Wilson, N., Flowers, G., and Mingo, L.: Characterization and in-terpretation of polythermal structure in two subarctic glaciers, J.Geophys. Res., 118, 1443–1459, https://doi.org/10.1002/jgrf.20096, 2013.
Wynn, P. M., Hodson, A. J., Heaton, T. H., and Chenery, S. R.: Nitrate
production beneath a High Arctic glacier, Svalbard, Chem. Geol., 244, 88–102, 2007.
yr.no: Longyearbyen – historikk,
available at: https://www.yr.no/nb/historikk/graf/1-2759929/Norge/Svalbard/Svalbard/Longyearbyen?q=2019-04,
last access: 24 July 2020.
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on...