Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-1677-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-1677-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change
Jouni Räisänen
CORRESPONDING AUTHOR
Institute for Atmospheric and Earth System Research/Physics,
University of Helsinki, P.O. Box 64, 00014 University of Helsinki, Finland
Related authors
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Jianpu Bian, Jouni Räisänen, and Heikki Seppä
Clim. Past, 21, 1209–1233, https://doi.org/10.5194/cp-21-1209-2025, https://doi.org/10.5194/cp-21-1209-2025, 2025
Short summary
Short summary
This research explores the connection between the mid-Holocene northward shift of the Intertropical Convergence Zone (ITCZ) and Hadley cell changes and effects on terrestrial hydroclimate. Our findings show that the ITCZ shift coincides with a contraction and weakening of the northern Hadley cell and an expansion and intensification of the southern cell, leading to reduced (increased) terrestrial aridity and dryland contraction (expansion) in the Northern (Southern) Hemisphere.
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023, https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Short summary
Changes in snow amount since the mid-20th century are studied, focusing on the mechanisms that have changed the water equivalent of the snowpack (SWE). Both reanalysis and climate model data show a decrease in SWE in most of the Northern Hemisphere. The total winter precipitation has increased in most areas, but this has been compensated for by reduced snowfall-to-precipitation ratio and enhanced snowmelt. However, the details and magnitude of these trends vary between different data sets.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Kalle Nordling, Hannele Korhonen, Jouni Räisänen, Antti-Ilari Partanen, Bjørn H. Samset, and Joonas Merikanto
Atmos. Chem. Phys., 21, 14941–14958, https://doi.org/10.5194/acp-21-14941-2021, https://doi.org/10.5194/acp-21-14941-2021, 2021
Short summary
Short summary
Understanding the temperature responses to different climate forcing agents, such as greenhouse gases and aerosols, is crucial for understanding future regional climate changes. In climate models, the regional temperature responses vary for all forcing agents, but the causes of this variability are poorly understood. For all forcing agents, the main component contributing to variance in regional surface temperature responses between the climate models is the clear-sky longwave emissivity.
Joonas Merikanto, Kalle Nordling, Petri Räisänen, Jouni Räisänen, Declan O'Donnell, Antti-Ilari Partanen, and Hannele Korhonen
Atmos. Chem. Phys., 21, 5865–5881, https://doi.org/10.5194/acp-21-5865-2021, https://doi.org/10.5194/acp-21-5865-2021, 2021
Short summary
Short summary
Human-induced aerosols concentrate around their emission sources, yet their climate effects span far and wide. Here, we use two climate models to robustly identify the mechanisms of how Asian anthropogenic aerosols impact temperatures across the globe. A total removal of Asian anthropogenic aerosols increases the global temperatures by 0.26 ± 0.04 °C in the models, with the strongest warming taking place over the Arctic due to increased atmospheric transport of energy towards the high north.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Jianpu Bian, Jouni Räisänen, and Heikki Seppä
Clim. Past, 21, 1209–1233, https://doi.org/10.5194/cp-21-1209-2025, https://doi.org/10.5194/cp-21-1209-2025, 2025
Short summary
Short summary
This research explores the connection between the mid-Holocene northward shift of the Intertropical Convergence Zone (ITCZ) and Hadley cell changes and effects on terrestrial hydroclimate. Our findings show that the ITCZ shift coincides with a contraction and weakening of the northern Hadley cell and an expansion and intensification of the southern cell, leading to reduced (increased) terrestrial aridity and dryland contraction (expansion) in the Northern (Southern) Hemisphere.
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023, https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Short summary
Changes in snow amount since the mid-20th century are studied, focusing on the mechanisms that have changed the water equivalent of the snowpack (SWE). Both reanalysis and climate model data show a decrease in SWE in most of the Northern Hemisphere. The total winter precipitation has increased in most areas, but this has been compensated for by reduced snowfall-to-precipitation ratio and enhanced snowmelt. However, the details and magnitude of these trends vary between different data sets.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Kalle Nordling, Hannele Korhonen, Jouni Räisänen, Antti-Ilari Partanen, Bjørn H. Samset, and Joonas Merikanto
Atmos. Chem. Phys., 21, 14941–14958, https://doi.org/10.5194/acp-21-14941-2021, https://doi.org/10.5194/acp-21-14941-2021, 2021
Short summary
Short summary
Understanding the temperature responses to different climate forcing agents, such as greenhouse gases and aerosols, is crucial for understanding future regional climate changes. In climate models, the regional temperature responses vary for all forcing agents, but the causes of this variability are poorly understood. For all forcing agents, the main component contributing to variance in regional surface temperature responses between the climate models is the clear-sky longwave emissivity.
Joonas Merikanto, Kalle Nordling, Petri Räisänen, Jouni Räisänen, Declan O'Donnell, Antti-Ilari Partanen, and Hannele Korhonen
Atmos. Chem. Phys., 21, 5865–5881, https://doi.org/10.5194/acp-21-5865-2021, https://doi.org/10.5194/acp-21-5865-2021, 2021
Short summary
Short summary
Human-induced aerosols concentrate around their emission sources, yet their climate effects span far and wide. Here, we use two climate models to robustly identify the mechanisms of how Asian anthropogenic aerosols impact temperatures across the globe. A total removal of Asian anthropogenic aerosols increases the global temperatures by 0.26 ± 0.04 °C in the models, with the strongest warming taking place over the Arctic due to increased atmospheric transport of energy towards the high north.
Cited articles
Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded
precipitation for systematic bias, J. Geophys. Res., 108, 4257,
https://doi.org/10.1029/2002JD002499, 2003.
Auer Jr., A. H.: The rain versus snow threshold temperatures, Weatherwise,
27, 67, https://doi.org/10.1080/00431672.1974.9931684, 1974.
Balsamo, G., Viterbo, P., Scipal, K., Beljaars, A., van den Hurk, B.,
Hirschi, M., and Betts, A. K.: A revised hydrology for the ECMWF model:
verification from field site to terrestrial water storage and impact in the
Integrated Forecast System, J. Hydrometeor., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009.
Cao, B., Gruber, S., Zheng, D., and Li, X.: The ERA5-Land soil temperature bias in permafrost regions, The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, 2020.
Chen, D.: A monthly circulation climatology for Sweden and its application
to a winter temperature case study, Int. J. Climatol., 20, 1067–1076,
https://doi.org/10.1002/1097-0088(200008)20:10<1067::AID-JOC528>3.0.CO;2-Q, 2000.
Collins, M., Knutti, R., Arblaster, J., Dufres J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate
Change: Projections, Com-mitments and Irreversibility, in: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1029–1136,
https://doi.org/10.1017/CBO9781107415324, 2013.
Copernicus Climate Change Service: ERA5-Land monthly averaged data from 1981 to present, available at: https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&text=era5-land, last access: 2 April 2021.
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate
change projections: the role of internal variability, Clim. Dynam., 38, 527–546,
https://doi.org/10.1007/s00382-010-0977-x, 2012.
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Beljaars, A.,
Schär, C., and Elder, K.: An improved snow scheme for the ECMWF land
surface model: Description and offline validation, J. Hydrometeorol., 11,
899–916, https://doi.org/10.1175/2010JHM1249.1, 2010.
Earth System Grid Federation: WCRP CORDEX, available at: https://esgf-data.dkrz.de/search/cordex-dkrz/, last access: 2 April 2021.
Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Decharme, B., Dutra, E., Fang, X., Gusev, Y., Hagemann, S., Haverd, V., Kontu, A., Krinner, G., Lafaysse, M., Lejeune, Y., Marke, T., Marks, D., Marty, C., Menard, C. B., Nasonova, O., Nitta, T., Pomeroy, J., Schädler, G., Semenov, V., Smirnova, T., Swenson, S., Turkov, D., Wever, N., and Yuan, H.: Snow cover duration trends observed at sites and predicted by multiple models, The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, 2020.
Fontrodona Bach, A., van der Schrier, G., Melsen, L. A., Klein Tank, A. M.
G., and Teuling, A. J.: Widespread and accelerated decrease of observed mean
and extreme snow depth over Europe, Geophys. Res. Lett., 45, 12312–12319, https://doi.org/10.1029/2018GL079799, 2018.
Hansen-Bauer, I. and Førland, E.: Temperature and precipitation
variations in Norway 1900–1994 and their links to atmospheric circulation,
Int. J. Climatol., 20, 1693–1708, https://doi.org/10.1002/1097-0088(20001130)20:14<1693::AID-JOC567>3.0.CO;2-7, 2000.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803,
2020.
Irannezhad, M., Ronkanen, A.-K., and Kløve, B.: Wintertime climate
factors controlling snow resource decline in Finland. Int. J. Climatol., 36,
110–131, https://doi.org/10.1002/joc.4332, 2016.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B.,Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski,G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G.,Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S.,Kröner, N., Kotlarski,
S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S.,
Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,
Samuelsson,P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R.,
Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution
climate change projections for European impact research, Reg. Environ.
Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Koistinen, J., Michelson, D., Hohti, H., and Peura, M.: Operational
measurement of precipitation in cold climates, in: Weather radar. Principles
and advanced applications, edited by: Meischner, P., Springer-Verlag,
Berlin, Germany, 78–114, https://doi.org/10.1007/978-3-662-05202-0_3,
2004.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Lehtonen, I.: Four consecutive snow-rich winters in Southern Finland:
2009/2010–2012/2013, Weather, 70, 3–8, https://doi.org/10.1002/wea.2360, 2015.
Luomaranta, A., Aalto, J., and Jylhä, K.: Snow cover trends in Finland
over 1961–2014 based on gridded snow depth observations, Int. J. Climatol.,
39, 3147–3159, https://doi.org/10.1002/joc.6007, 2019.
Mankin, J. S. and Diffenbaugh, N. S.: Influence of temperature and
precipitation variability on near-term snow trends, Clim. Dynam., 45,
1099–1116, https://doi.org/10.1007/s00382-014-2357-4, 2015.
Muñoz Sabater, J.: First ERA5-Land dataset to be released this spring,
ECMWF Newsletter, 159, 8–9, 2019.
O' Gorman, P.: Contrasting responses of mean and extreme snowfall to climate
change, Nature, 512, 416–418, https://doi.org/10.1038/nature13625, 2014.
Pelosi, A., Terribile, F., D'Urso, G., and Battista, G.: Comparison of ERA5-Land
and UERRA MESCAN-SURFEX Reanalysis data with spatially interpolated weather
observations for the regional assessment of reference evapotranspiration,
Water, 12, 1669, https://doi.org/10.3390/w12061669, 2020.
Räisänen, J.: Warmer climate: less or more snow?, Clim. Dynam., 30,
307–319, https://doi.org/10.1007/s00382-007-0289-y, 2008.
Räisänen, J.: Twenty-first century changes in snowfall climate in
Northern Europe in ENSEMBLES regional climate models, Clim. Dynam., 46,
339–353, https://doi.org/10.1007/s00382-015-2587-0, 2016.
Räisänen, J.: Effect of atmospheric circulation on recent
temperature changes in Finland, Clim. Dynam., 53, 5675–5687, https://doi.org/10.1007/s00382-019-04890-2, 2019.
Räisänen, J.: Data and GrADS scripts related to the article “Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change”, the Cryosphere, https://doi.org/10.5194/tc-2020-343, Zenodo, https://doi.org/10.5281/zenodo.4659961, 2021.
Räisänen, J. and Eklund, J.: 21st Century changes in snow climate in
Northern Europe: a high-resolution view from ENSEMBLES regional climate
models, Clim. Dynam., 38, 2575–2591, https://doi.org/10.1007/s00382-011-1076-3, 2012.
Saffioti, C., Fischer, E. M., Scherrer, S. C., and Knutti, R.: Reconciling
observed and modelled temperature and precipitation trends over Europe by
adjusting for circulation variability, Geophys. Res. Lett., 43, 8189–8198,
https://doi.org/10.1002/2016GL069802, 2016.
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science, npj
Clim. Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4, 2018.
Skaugen, T., Stranden, H. B., and Saloranta, T: Trends in snow water
equivalent in Norway (1931–2009), Hydrol. Res., 43, 489–499, https://doi.org/10.2166/nh.2012.109, 2012.
Taskinen, A. and Söderholm, K.: Operational correction of daily
precipitation measurements in Finland, Boreal Environ. Res., 21,
1–24, 2016.
The Finnish Meteorological Institute: Download observations, available at: https://en.ilmatieteenlaitos.fi/download-observations/, last access: 2 April 2021.
Tuomenvirta, H., Alexandersson, H., Drebs, A., Frich, P., and Nordli, P. O.:
Trends in Nordic and Arctic temperature extremes and ranges, J. Climate, 13,
977–990, https://doi.org/10.1175/1520-0442(2000)013<0977:TINAAT>2.0.CO;2, 2000.
Ungersböck, M., Rubel, F., Fuchs, T., and Rudolf, B.: Bias correction of
global daily rain gauge measurements, Phys. Chem. Earth, B26, 411–414, 2001.
van der Linden, P. and Mitchell, J. F. B. (Eds.): ENSEMBLES: Climate Change
and its Impacts: Summary of research and results from the ENSEMBLES project.
Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 160 pp., 2009.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Clim. Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Zhong, X., Zhang, T., Kang, S., Wang, K., Zheng, L., Hu, Y., and Wang, H.: Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012, The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018, 2018.
Short summary
Interannual variability of snow amount in northern Europe is studied. In the coldest areas, total winter precipitation governs snow amount variability. In warmer regions, the fraction of snowfall that survives without melting is more important. Since winter temperature and precipitation are positively correlated, there is often more snow in milder winters in the coldest areas. However, in model simulations of a warmer future climate, snow amount decreases nearly everywhere in northern Europe.
Interannual variability of snow amount in northern Europe is studied. In the coldest areas,...