Articles | Volume 14, issue 3
https://doi.org/10.5194/tc-14-789-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-789-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Solar radiative transfer in Antarctic blue ice: spectral considerations, subsurface enhancement, inclusions, and meteorites
Andrew R. D. Smedley
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, University of
Manchester, Manchester, M13 9PL, UK
Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK
Geoffrey W. Evatt
Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK
Amy Mallinson
Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK
Eleanor Harvey
Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK
EPSRC Centre for Doctoral Training in Fluid Dynamics, University of
Leeds, Leeds, LS2 9JT, UK
Related authors
Michael Priestley, Michael le Breton, Thomas J. Bannan, Stephen D. Worrall, Asan Bacak, Andrew R. D. Smedley, Ernesto Reyes-Villegas, Archit Mehra, James Allan, Ann R. Webb, Dudley E. Shallcross, Hugh Coe, and Carl J. Percival
Atmos. Chem. Phys., 18, 13481–13493, https://doi.org/10.5194/acp-18-13481-2018, https://doi.org/10.5194/acp-18-13481-2018, 2018
Andrew R. D. Smedley, Geoffrey W. Evatt, Amy Mallinson, and Eleanor Harvey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-79, https://doi.org/10.5194/tc-2018-79, 2018
Revised manuscript not accepted
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
Andrew R. D. Smedley, John S. Rimmer, and Ann R. Webb
Atmos. Meas. Tech., 10, 4697–4704, https://doi.org/10.5194/amt-10-4697-2017, https://doi.org/10.5194/amt-10-4697-2017, 2017
Short summary
Short summary
Long-term trends of total column ozone and assessments of its recovery are underpinned by daily “best representative values” from Brewer spectrophotometers and other ground-based instruments. However, the current calculation of these best representative values often rejects otherwise useful data and has deficiencies during partly cloudy days. We propose a new methodology that takes into account all valid data and accounts for unevenly spaced observations and their uncertainties.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
Michael Priestley, Michael le Breton, Thomas J. Bannan, Stephen D. Worrall, Asan Bacak, Andrew R. D. Smedley, Ernesto Reyes-Villegas, Archit Mehra, James Allan, Ann R. Webb, Dudley E. Shallcross, Hugh Coe, and Carl J. Percival
Atmos. Chem. Phys., 18, 13481–13493, https://doi.org/10.5194/acp-18-13481-2018, https://doi.org/10.5194/acp-18-13481-2018, 2018
Andrew R. D. Smedley, Geoffrey W. Evatt, Amy Mallinson, and Eleanor Harvey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-79, https://doi.org/10.5194/tc-2018-79, 2018
Revised manuscript not accepted
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
Andrew R. D. Smedley, John S. Rimmer, and Ann R. Webb
Atmos. Meas. Tech., 10, 4697–4704, https://doi.org/10.5194/amt-10-4697-2017, https://doi.org/10.5194/amt-10-4697-2017, 2017
Short summary
Short summary
Long-term trends of total column ozone and assessments of its recovery are underpinned by daily “best representative values” from Brewer spectrophotometers and other ground-based instruments. However, the current calculation of these best representative values often rejects otherwise useful data and has deficiencies during partly cloudy days. We propose a new methodology that takes into account all valid data and accounts for unevenly spaced observations and their uncertainties.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
Related subject area
Discipline: Other | Subject: Antarctic
First evidence of microplastics in Antarctic snow
Retention time of lakes in the Larsemann Hills oasis, East Antarctica
A pilot study about microplastics and mesoplastics in an Antarctic glacier
Antarctic ice shelf thickness change from multimission lidar mapping
Alex R. Aves, Laura E. Revell, Sally Gaw, Helena Ruffell, Alex Schuddeboom, Ngaire E. Wotherspoon, Michelle LaRue, and Adrian J. McDonald
The Cryosphere, 16, 2127–2145, https://doi.org/10.5194/tc-16-2127-2022, https://doi.org/10.5194/tc-16-2127-2022, 2022
Short summary
Short summary
This study confirms the presence of microplastics in Antarctic snow, highlighting the extent of plastic pollution globally. Fresh snow was collected from Ross Island, Antarctica, and subsequent analysis identified an average of 29 microplastic particles per litre of melted snow. The most likely source of these airborne microplastics is local scientific research stations; however, modelling shows their origin could have been up to 6000 km away.
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
Short summary
Antarctica consists mostly of frozen water, and it makes the continent sensitive to warming due to enhancing a transition/exchange of water from solid (ice and snow) to liquid (lakes and rivers) form. Therefore, it is important to know how fast water is exchanged in the Antarctic lakes. The study gives first estimates of scales for water exchange for five lakes located in the Larsemann Hills oasis. Two methods are suggested to evaluate the timescale for the lakes depending on their type.
Miguel González-Pleiter, Gissell Lacerot, Carlos Edo, Juan Pablo Lozoya, Francisco Leganés, Francisca Fernández-Piñas, Roberto Rosal, and Franco Teixeira-de-Mello
The Cryosphere, 15, 2531–2539, https://doi.org/10.5194/tc-15-2531-2021, https://doi.org/10.5194/tc-15-2531-2021, 2021
Short summary
Short summary
Plastics have been found in several compartments in Antarctica. However, there is currently no evidence of their presence on Antarctic glaciers. Our pilot study is the first report of plastic pollution presence on an Antarctic glacier.
Tyler C. Sutterley, Thorsten Markus, Thomas A. Neumann, Michiel van den Broeke, J. Melchior van Wessem, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 1801–1817, https://doi.org/10.5194/tc-13-1801-2019, https://doi.org/10.5194/tc-13-1801-2019, 2019
Short summary
Short summary
Most of the Antarctic ice sheet is fringed by ice shelves, floating extensions of ice that help to modulate the flow of the glaciers that float into them. We use airborne laser altimetry data to measure changes in ice thickness of ice shelves around West Antarctica and the Antarctic Peninsula. Each of our target ice shelves is susceptible to short-term changes in ice thickness. The method developed here provides a framework for processing NASA ICESat-2 data over ice shelves.
Cited articles
Adhikari, L., Wang, Z., and Deng, M.: Seasonal variations of Antarctic clouds
observed by CloudSat and CALIPSO satellites, J. Geophys. Res.-Atmos., 117,
1–17, https://doi.org/10.1029/2011JD016719, 2012.
Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E.: AFGL
atmospheric constituent profiles (0–120 km), Tech. Rep. AFGL-TR-86-0110,
Bedford, MA, 1986.
ANSMET: Antarctic Meteorite Newsletters, available at:
https://curator.jsc.nasa.gov/antmet/amn/amn.cfm, 25 July, 2017.
Battino, R., Rettich, T. R., and Tominaga, T.: The solubility of nitrogen and
air in liquids, J. Phys. Chem. Ref. Data, 13, 563–600,
https://doi.org/10.1063/1.555713, 1984.
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox,
C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland
melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86,
https://doi.org/10.1038/nature12002, 2013.
Bintanja, R.: On the glaciological, meteorological, and climatological
significance of Antarctic blue ice areas, Rev. Geophys., 37, 337–359,
https://doi.org/10.1029/1999RG900007, 1999.
Bintanja, R., Jonsson, S., and Knap, W. H.: The annual cycle of the surface
energy balance of Antarctic blue ice, J. Geophys. Res.-Atmos., 102,
1867–1881, 1997
Bintanja, R.: Surface heat budget of Antarctic snow and blue ice:
Interpretation of spatial and temporal variability, J. Geophys. Res.-Atmos., 105, 24387–24407, 2000.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by
small particles, Wiley, New York, 530 pp., 1983.
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012.
Brandt, R. E. and Warren, S. G.: Solar-heating rates and temperature profiles
in Antarctic snow and ice, J. Glaciol., 39, 99–110, 1993.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, 704 pp., 2010.
Dadic, R., Mullen, P. C., Schneebeli, M., Brandt, R. E., and Warren, S. G.:
C516 Wiki, available at: http://c516wiki.wikispaces.com/home
(last access: 22 July 2016), 2011.
Dadic, R., Mullen, P. C., Schneebeli, M., Brandt, R. E., and Warren, S. G.:
Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of
bare ice near the Transantarctic Mountains: Implications for sea glaciers on
Snowball Earth, J. Geophys. Res.-Earth, 118, 1658–1676,
https://doi.org/10.1002/jgrf.20098, 2013.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Greer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Mong-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Diaz, S. B., Deferrari, G., Nelson, D., and Camilion, M. C.: Climatologies of
ozone and UV-B irradiances over Antarctica in the last decades, Gayana,
68, 157–160, 2004.
Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q., Petit, J., Geyer,
M., Morin, S., and Josse, B.: Contribution of light-absorbing impurities in
snow to Greenland's darkening since 2009, Nat. Geosci., 7, 509–512,
https://doi.org/10.1038/ngeo2180, 2014.
Ehn, J. K., Mundy, C. J., Barber, D. G., Hop, H., Rossnagel, A., and Stewart,
J.: Impact of horizontal spreading on light propagation in melt pond covered
seasonal sea ice in the Canadian Arctic, J. Geophys. Res.-Oceans, 116,
C00G02, https://doi.org/10.1029/2010JC006908, 2011.
Evatt, G. W., Coughlan, M. J., Joy, K. H., Smedley, A. R. D., Connolly, P.
J., and Abrahams, I. D.: A potential hidden layer of meteorites below the ice
surface of Antarctica, Nat. Commun., 7, 10679, https://doi.org/10.1038/ncomms10679,
2016.
Gardner, A. S. and Sharp, M. J.: A review of snow and ice albedo and the
development of a new physically based broadband albedo parameterization, J.
Geophys. Res.-Earth, 115, F01009, https://doi.org/10.1029/2009JF001444, 2010.
Grenfell, T. C.: A radiative transfer model for sea ice with vertical
structure variations, J. Geophys. Res., 96, 16991–17001, 1991.
Haack, H., Schutt, J., Meibom, A., and Harvey, R.: Results from the Greenland
search for meteorites expedition, Meteorit. Planet. Sci., 42,
1727–1733, https://doi.org/10.1111/j.1945-5100.2007.tb00533.x, 2007.
Hale, G. M. and Querry, M. R.: Optical constants of water in the 200-nm to
200-micron wavelength region, Appl. Opt., 12, 555–63, 1973.
Harvey, R.: The origin and significance of Antarctic meteorites, Chemie der
Erde, 63, 93–147, https://doi.org/10.1078/0009-2819-00031, 2003.
Haussener, S., Gergely, M., Schneebeli, M., and Steinfeld, A.: Determination
of the macroscopic optical properties of snow based on exact morphology and
direct pore-level heat transfer modeling, J. Geophys. Res.-Earth, 117,
F03009, https://doi.org/10.1029/2012JF002332, 2012.
Hecht, E.: Optics, 2nd edn., Addison-Wesley Publishing Company, Reading, MA,
640 pp., 1987.
Henyey, L. and Greenstein, J.: Diffuse radiation in the Galaxy, Astrophys.
J., 93, 70–83, 1941.
Hofer, S., Tedstone, A. J., Fettweis, X., and Bamber, J. L.: Decreasing cloud
cover drives the recent mass loss on the Greenland Ice Sheet, Sci. Adv., 3,
e1700584, https://doi.org/10.1126/sciadv.1700584, 2017.
Jacques, S. L.: Monte Carlo modeling of light transport in tissue (steady
state and time of flight), in: Optical-Thermal Response of Laser-Irradiated
Tissue, edited by: Welch, A. J. and van Gemert, M. J. C., 109–144,
Springer, 2011.
Jiang, S., Stamnes, K., Li, W., and Hamre, B.: Enhanced solar irradiance
across the atmosphere-sea ice interface: a quantitative numerical study,
Appl. Opt., 44, 2613–2625, https://doi.org/10.1364/AO.44.002613, 2005.
Kurucz, R. L.: Synthetic infrared spectra, in: Infrared Solar Physics:
Proceedings of the 154th Symposium of the International Astronomical Union,
edited by: Rabin, D. M., Jefferies, J. T., and Lindsey, C., 523–531, Kluwer,
1994.
Light, B., Maykut, G. A., and Grenfell, T. C. C.: A two-dimensional Monte
Carlo model of radiative transfer in sea ice, J. Geophys. Res., 108,
1–18, https://doi.org/10.1029/2002JC001513, 2003.
Liston, G. E., Winther, J. G., Bruland, O., Elvehøy, H., and Sand, K.:
Below-surface ice melt on the coastal Antarctic ice sheet, J. Glaciol.,
45, 273–285, doi 10.3189/002214399793377130, 1999.
Malinka, A. V.: Light scattering in porous materials: Geometrical optics and
stereological approach, J. Quant. Spectrosc. Ra., 141, 14–23,
https://doi.org/10.1016/j.jqsrt.2014.02.022, 2014.
Malinka, A., Zege, E., Heygster, G., and Istomina, L.: Reflective properties of white sea ice and snow, The Cryosphere, 10, 2541–2557, https://doi.org/10.5194/tc-10-2541-2016, 2016.
Mallinson, A.: Ice and Debris Interactions, PhD thesis, School of Natural
Sciences, University of Manchester, UK, 266 pp., 2019.
Marchesini, R., Bertoni, A., Andreola, S., Melloni, E., and Sichirollo, A.
E.: Extinction and absorption coefficients and scattering phase functions of
human tissues in vitro, Appl. Opt., 28, 2318–2324,
https://doi.org/10.1364/AO.28.002318, 1989.
Mayer, B.: Radiative transfer in the cloudy atmosphere, EPJ Conf., 1,
75–99, https://doi.org/10.1140/epjconf/e2009-00912-1, 2009.
Mayer, B., Hoch, S. W., and Whiteman, C. D.: Validating the MYSTIC three-dimensional radiative transfer model with observations from the complex topography of Arizona's Meteor Crater, Atmos. Chem. Phys., 10, 8685–8696, https://doi.org/10.5194/acp-10-8685-2010, 2010.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
McNicholas, H. J.: Absolute methods in reflectometry, Bur. Stand. J. Res.,
1, 29–73, https://doi.org/10.6028/jres.001.003, 1928.
Mellor, M. and Swithinbank, C.: Airfields on Antarctic glacier ice, CRREL
Rep, 89–21, 97, 1989.
Mullen, P. C. and Warren, S. G.: Theory of the optical properties of lake
ice, J. Geophys. Res.-Atmos., 93, 8403–8414,
https://doi.org/10.1029/JD093iD07p08403, 1988.
Perovich, D. K.: Light reflection and transmission by a temperate snow
cover, J. Glaciol., 53, 201–210, https://doi.org/10.3189/172756507782202919, 2007.
Pierrehumbert, R. T., Abbot, D. S., Voigt, A. and Koll, D.: Climate of the
Neoproterozoic, Annu. Rev. Earth Planet. Sci., 39, 417–460,
https://doi.org/10.1146/annurev-earth-040809-152447, 2011.
Pulli, T., Kärhä, P., and Ikonen, E.: A method for optimizing the
cosine response of solar UV diffusers, J. Geophys. Res.-Atmos., 118,
7897–7904, https://doi.org/10.1002/jgrd.50642, 2013.
Shettle, E. P.: Models of aerosols, clouds and precipitation for atmospheric
propagation studies, in: Conference on Atmospheric Propagation in the UV,
Visible, IR and MM-Region and Related System Aspects, Copenhagen, Denmark, 9–13 October, 1989.
Stibal, M., Box, J. E., Cameron, K. A., Langen, P. L., Yallop, M. L.,
Mottram, R. H., Khan, A. L., Molotch, N. P., Chrismas, N. A. M., Quaglia, F.
C., Remias, D., Paul Smeets, C. J. P., van den Broeke, M. R., Ryan, J. C.,
Hubbard, A., Tranter, M., van As, D., and Ahlstrøm, A. P.: Algae drive
enhanced darkening of bare ice on the Greenland ice sheet, Geophys. Res.
Lett., 44, 11463–11471, https://doi.org/10.1002/2017GL075958, 2017.
Taskjelle, T., Hudson, S. R., Granskog, M. A., and Hamre, B.: Modelling radiative transfer through ponded first-year Arctic sea ice with a plane-parallel model, The Cryosphere, 11, 2137–2148, https://doi.org/10.5194/tc-11-2137-2017, 2017.
Thomas, G. E. and Stamnes, K.: Radiative Transfer in the Atmosphere and
Ocean, Cambridge University Press, Cambridge, 517 pp., 1999.
Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber,
A., Treffeisen, R., Stone, R. S., Andrews, E., Sharma, S., Radionov, V., von
Hoyningen-Huene, W., Stebel, K., Hansen, G. H., Myhre, C. L., Wehrli, C.,
Aaltonen, V., Lihavainen, H., Virkkula, A., Hillamo, R., Ström, J.,
Toledano, C., Cachorro, V. E., Ortiz, P., de Frutos, A. M., Blindheim, S.,
Frioud, M., Gausa, M., Zielinski, T., Petelski, T., and Yamanouchi, T.:
Aerosols in polar regions: A historical overview based on optical depth and
in situ observations, J. Geophys. Res.-Atmos., 112, D16205,
https://doi.org/10.1029/2007JD008432, 2007.
van den Broeke, M. R., Smeets, C. J. P. P., and van de Wal, R. S. W.: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet, The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, 2011.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Van Tricht, K., Lhermitte, S., Gorodetskaya, I. V, Noe, B., and Turner, D.
D.: Clouds enhance Greenland ice sheet meltwater runoff, Nat. Commun., 7,
2–10, https://doi.org/10.1038/ncomms10266, 2015.
von Hardenberg, J., Vozella, L., Tomasi, C., Vitale, V., Lupi, A., Mazzola, M., van Noije, T. P. C., Strunk, A., and Provenzale, A.: Aerosol optical depth over the Arctic: a comparison of ECHAM-HAM and TM5 with ground-based, satellite and reanalysis data, Atmos. Chem. Phys., 12, 6953–6967, https://doi.org/10.5194/acp-12-6953-2012, 2012.
Wang, L., Jacques, S. L., and Zheng, L.: MCML–Monte Carlo modeling of light
transport in multi-layered tissues, Comput. Methods Programs Biomed., 47,
131–146, https://doi.org/10.1016/0169-2607(95)01640-F, 1995.
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the
ultraviolet to the microwave: A revised compilation, J. Geophys. Res.-Atmos., 113, 1–10, https://doi.org/10.1029/2007JD009744, 2008.
Warren, S. G.: Optical properties of ice and snow, Philos. Trans. R. Soc. A,
377, 20180161, https://doi.org/10.1098/rsta.2018.0161, 2019.
Webster, M. A., Rigor, I. G., Perovich, D. K., Richter-menge, J. A.,
Polashenski, C. M., and Light, B.: Seasonal evolution of melt ponds on Arctic
sea ice, J. Geophys. Res.-Oceans, 120, 5968–5982,
https://doi.org/10.1002/2015JC011030, 2015.