Articles | Volume 14, issue 2
https://doi.org/10.5194/tc-14-657-2020
https://doi.org/10.5194/tc-14-657-2020
Research article
 | Highlight paper
 | 
14 Feb 2020
Research article | Highlight paper |  | 14 Feb 2020

Cryoconite: an efficient accumulator of radioactive fallout in glacial environments

Giovanni Baccolo, Edyta Łokas, Paweł Gaca, Dario Massabò, Roberto Ambrosini, Roberto S. Azzoni, Caroline Clason, Biagio Di Mauro, Andrea Franzetti, Massimiliano Nastasi, Michele Prata, Paolo Prati, Ezio Previtali, Barbara Delmonte, and Valter Maggi

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (15 Nov 2019) by Ruth Mottram
AR by Giovanni Baccolo on behalf of the Authors (22 Nov 2019)  Author's response   Manuscript 
ED: Publish as is (22 Jan 2020) by Ruth Mottram
AR by Giovanni Baccolo on behalf of the Authors (24 Jan 2020)  Manuscript 
Download
Short summary
Cryoconite is the sediment found on the surface of glaciers. The paper presents cryoconite as an environmental matrix able to accumulate natural and artificial radioactivity with unprecedented efficiency. Only samples from sites where nuclear accidents and explosions occurred present a stronger radioactive contamination. The peculiarities of glacial environments are responsible for this extreme feature, making cryoconite a useful tool tool for the monitoring of environmental radioactivity.