Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016.
Errico, R. M.: What is an Adjoint model?, B. Am. Meteorol. Soc., 78, 2577–2591, 1997.
Gilbert, J. C. and Lemaréchal, C.: Some numerical experiments with variable-storage quasi-Newton algorithms, Math. Progr., 45, 407–435, https://doi.org/10.1007/BF01589113, 1989.
Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 432 pp., 1989.
Goldberg, D. N. and Heimbach, P.: Parameter and state estimation with a time-dependent adjoint marine ice sheet model, The Cryosphere, 7, 1659–1678, https://doi.org/10.5194/tc-7-1659-2013, 2013.
Harder, M. and Fischer, H.: Sea ice dynamics in the weddell sea
simulated with an optimized model, J. Geophys. Res.-Oceans, 104, 11151–11162, 1999.
Heimbach, P., Menemenlis, D., Losch, M., Campin, J. M., and Hill, C.: On the formulation of sea-ice models. Part 2: Lessons from multi-year adjoint sea ice export sensitivities through the Canadian Arctic Archipelago, Ocean Model., 33, 145–158, https://doi.org/10.1016/j.ocemod.2010.02.002, 2010.
Hibler, W.: A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815–846, 1979.
Hoteit, I., Cornuelle, B., Kohl, A., and Stammer, D.: Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation, Q. J. Roy. Meteor. Soc., 131, 3659–3682, 2005.
Hunke, E. C.: Viscous-plastic sea ice dynamics with the EVP model: Linearization issues, J. Comput. Phys., 170, 18–38, 2001.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos sea ice model. Documentation and software user's manual version 4.0, Tech. Rep. LA-CC-06-012, Los Alamos Natl. Lab., Los Alamos, NM, 2008.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: the Los Alamos Sea Ice Model documentation and software users manual version 4.1, Tech. Rep. LA-CC-06-012, T-3 Fluid Dynamics Group, Los Alamos Natl. Lab., Los Alamos, NM, 2010.
Ingber, L.: Very fast simulated re-annealing, Math. Comput. Model., 12, 967–973, 1989.
Juricke, S., Lemke, P., Timmermann, R., and Rackow, T.: Effects of stochastic ice strength perturbation on Arctic finite element sea ice modeling, J. Climate, 26, 3785–3802, https://doi.org/10.1175/JCLI-D-12-00388.1, 2013.
Kauker, F., Kaminski, T., Karcher, M., Giering, R. , Gerdes, R. and Voßbeck, M.: Adjoint analysis of the 2007 all
time Arctic sea-ice minimum, Geophys. Res. Lett., 36, L03707, https://doi.org/10.1029/2008GL036323, 2009.
Kimmritz, M., Danilov, S., and Losch, M.: The adaptive EVP method for solving the sea ice momentum equation, Ocean Model., 101, 59–67,
https://doi.org/10.1016/j.ocemod.2016.03.004, 2016.
Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., and Jung, T.: Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, 2019.
Kreyscher, M., Harder, M., Lemke,P., and Flato, G. M.: Results of the sea ice model intercomparison project: Evaluation of sea ice rheology schemes for use in climate simulations, J. Geophys. Res.-Oceans, 105, 11299–11320, 2000.
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat‐2 estimates of Arctic sea ice thickness and volume Geophys. Res Lett., 40, 732–737, https://doi.org/10.1002/grl.50193, 2013.
Le Dimet, F. X.: A general formalism of variational analysis, CIMMS report 22, Cooperative Institute for Mesoscale Meteorological Studies, Norman, OK, USA, 34 pp., 1982.
Le Dimet, F. X. and Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus, 38A, 97–110, 1986.
Lemieux, J.-F. and Tremblay, B.: Numerical convergence of viscous‐plastic sea ice models, J. Geophys. Res.-Oceans, 114, C05009, https://doi.org/10.1029/2008JC005017, 2009.
Lemieux, J.-F., Tremblay, B., Thomas, S., Sedlacek, J., and Mysak, L. A.: Using the preconditioned generalized minimum residual (GMRES) method to solve the sea-ice momentum equation, J. Geophys. Res.-Oceans, 113, C10004, https://doi.org/10.1029/2007JC004680, 2008.
Lemieux, J.-F., Knoll, D., Tremblay, B., Holland, D., and Losch, M.: A comparison of the Jacobian-free Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: a serial algorithm study, J. Comp. Phys., 231, 5926–5944, 2012.
Lemieux, J.-F., Knoll, D., Losch, M., and Girard, C.: A second-order accurate in time IMplicit–EXplicit (IMEX) integration scheme for sea ice dynamics, J. Comput. Phys., 263, 375–392, 2014.
Lemieux, J.-F., Tremblay, L. B., Dupont, F., Plante, M., Smith, G. C., and Dumont, D.: A basal stress parameterization for modeling landfast ice, J. Geophys. Res.-Oceans, 120, 3157–3173, https://doi.org/10.1002/2014JC010678, 2015.
Lemieux, J.-F., Dupont, F., Blain, P., Roy, F., Smith, G. C., and Flato, G. M.: Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges, J. Geophys. Res.-Oceans, 121 , 7354–7368, 2016.
Lewis, J. M. and Derber, J. C.: The use of adjoint equations to solve a variational adjustment problem with advective constraints, Tellus A, 37, 309–322, https://doi.org/10.3402/tellusa.v37i4.11675, 1985.
Losch, M., Fuchs, A., Lemieux, J. F., and Vanselow, A.: A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice ocean model, J. Comp. Phys., 257, 901–911, 2014.
Massonnet, F., Goosse, H., Fichefet, T., and Counillon, F.: Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter, J. Geophys. Res.-Oceans, 119, 4168–4184, https://doi.org/10.1002/2013JC009705, 2014.
Metzger, E. J., Smedstad, O. M., Thoppil, P. G., Hurlburt, H. E., Cummings, J. A., Wallcraft, A. J., Zamudio, L., Franklin, D. S., Posey, P. G., Phelps, M. W., Hogan, P. J., Bub, F. L., and DeHaan, C. J.: US Navy operational global ocean and Arctic ice prediction systems, Oceanography, 27,32–43, https://doi.org/10.5670/oceanog.2014.66, 2014.
Miller, P. A., Laxon, S. W., Feltham, D. L., and Cresswell, D. J.: Optimization of a sea ice model using basinwide observations of Arctic sea ice thickness, extent, and velocity, J. Climate, 19, 1090–1108, 2006.
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment, J. Geophys. Res., 116, C04025, https://doi.org/10.1029/2010JC006573, 2011.
Nichols, N. K.: Data Assimilation: Aims and Basic Concepts, in: Data Assimilation for the Earth System, NATO Science Series (Series IV: Earth and Environmental Sciences), edited by: Swinbank, R., Shutyaev, V., and Lahoz, W. A., Springer, Dordrecht, 2003.
Nichols, N. K.: Mathematical concepts of data assimilation, in: Data assimilation: making sense of observations, edited by: Lahoz, W., Khattatov, B., and Menard, R., Springer, Dordrecht, 2010.
Nitta, T.: Some analyses of observing systems simulation experiments in relation to the First GARP Global Experiment, GARP Working Group on Numerical Experimentation, Report No 10, 1–35, Plan for U.S. Participation in the Global Atmospheric Research Program, National Academy of Sciences, Washington, DC, USA, 1969.
Panteleev, G., Rogers, W. E., Yaremchuk, M., Shen, H., Rainville, L., and Grout, J.: Floe Size Mapping from Satellite SAR Images and Icewatch Observations in the Beaufort Sea during Autumn 2015, Tech. Rep. NRL/MR/7322-19-9903, Naval Researh Laboratory, Stennis Space Center, Mississippi, USA, 2019.
Penenko, V. V.: Methods of Numerical Simulation of Atmospheric processes, Gidrometeoizdat, Lenigrad, 350 pp., 1981.
Posey, P. G., Metzger, E. J., Wallcraft, A. J., Preller, R. H., Smedstad, O. M., and Phelps, M. W.: Validation of the 1/128 Arctic Cap Nowcast/Forecast System (ACNFS), Tech. Rep. NRL/MR/7320-10-9287, Naval Res. Lab., Stennis Space Center, Mississippi, USA, 2010.
Ryan, P. A. and Münchow, A.: Sea ice draft observations in Nares Strait from 2003 to 2012, J. Geophys. Res., 122, 3057–3080, https://doi.org/10.1002/2016JC011966, 2017.
Schwegmann, S., Haas, C., Fowler, C., and Gerdes, R.: A comparison of satellite-derived sea-ice motion with drifting-buoy data in the Weddell Sea, Antarctica, Ann. Glaciol., 52, 103–110, 2011.
Simmonds, I. and Rudeva, I.: The great Arctic cyclone of August 2012, Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259, 2012.
Stroh, J. N, Panteleev, G., Yaremchuk, M., Francis, O., and Allard, R.: Toward optimization of rheology in sea ice models through data assimilation, J. Atm. Oceanic Tech., 36, 2365–2382, https://doi.org/10.1175/JTECH-D-18-0239.1, 2019.
Sumata, H., Kwok, R., Gerdes, R., Kauker, F., and Karcher, M.: Uncertainty of arctic summer ice drift assessed by high-resolution SAR data, J. Geophys. Res.-Oceans, 120, 5285–5301, 2015.
Sumata, H., Kauker, F., Karcher, M., and Gerdes, R.: Simultaneous Parameter Optimization of an Arctic Sea Ice–Ocean Model by a Genetic Algorithm, Mon. Weather Rev., 147, 1899–1926, https://doi.org/10.1175/MWR-D-18-0360.1, 2019.
Thorndike, A. S. and Colony, R.: Sea ice motion in response to geostrophic winds, J. Geophys. Res., 87, 5845–5852, https://doi.org/10.1029/JC087iC08p05845, 1982.
Toyota, T. and Kimura, N.: An examination of the sea ice rheology for seasonal ice zones based on ice drift and thickness observations, J. Geophys. Res.-Oceans, 123, 1406–1428, 2018.
Tremblay, L. B., and Hakakian, M.: Estimating the sea ice compressive strength from satellite derived sea ice drift and NCEP reanalysis data, J. Phys. Oceanogr., 36, 2165–2172, 2006.
Tschudi, M., Meier, W., Stewart, J., Fowler, C., and Maslanik, J.: Polar Pathfinder daily 25 km EASE-Grid sea ice motion vectors, version 4, dataset 0116, NASA NationalSnow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/INAWUWO7QH7B, 2019.
Uotila, P., Farrell, S. O., Marsland, S., and Bi, D.: A sea-ice sensitivity study with a global ocean-ice model, Ocean Model., 51, 1–18, https://doi.org/10.1016/j.ocemod.2012.04.002., 2012.
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and Maqueda, M. A. M.: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation, Ocean Model., 27, 33–53, 2009.
Wunsch, C.: The Ocean Circulation Inverse Problem, Cambridge Univ. Press, Cambridge, 442 pp., 1996.
Yaremchuk, M., Townsend, T., Panteleev, G., Hebert, D., and Allard, R.: Advancing short‐term forecasts of ice conditions in the Beaufort Sea, J. Geophys. Res., 124, 807–820, https://doi.org/10.1029/2018JC014581, 2019.
Zhang, J. and Rothrock, D.: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates, Mon. Weather Rev., 131, 845–861, 2003.
Zhang, Y.-F. and Bitz, C. M.: Insights on sea ice data assimilation from perfect model observing system simulation experiments, J. Climate, 31, 5911–5926, 2018.