Articles | Volume 14, issue 11
The Cryosphere, 14, 3811–3827, 2020
https://doi.org/10.5194/tc-14-3811-2020
The Cryosphere, 14, 3811–3827, 2020
https://doi.org/10.5194/tc-14-3811-2020

Research article 09 Nov 2020

Research article | 09 Nov 2020

Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2

Lei Zheng et al.

Related authors

Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018,https://doi.org/10.5194/tc-12-227-2018, 2018

Related subject area

Discipline: Other | Subject: Remote Sensing
Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021,https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Brief communication: Glacier run-off estimation using altimetry-derived basin volume change: case study at Humboldt Glacier, northwest Greenland
Laurence Gray
The Cryosphere, 15, 1005–1014, https://doi.org/10.5194/tc-15-1005-2021,https://doi.org/10.5194/tc-15-1005-2021, 2021
Short summary
CryoSat Ice Baseline-D validation and evolutions
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020,https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data
Vasiliy Tikhonov, Ilya Khvostov, Andrey Romanov, and Evgeniy Sharkov
The Cryosphere, 12, 2727–2740, https://doi.org/10.5194/tc-12-2727-2018,https://doi.org/10.5194/tc-12-2727-2018, 2018
Short summary

Cited articles

Abdalati, W. and Steffen, K.: Passive microwave-derived snow melt regions on the Greenland Ice Sheet, Geophys. Res. Lett., 22, 787–790, https://doi.org/10.1029/95GL00433, 1995. 
Ackley, S. F., Lewis, M. J., Fritsen, C. H., and Xie, H.: Internal melting in Antarctic sea ice: Development of “gap layers”, Geophys. Res. Lett., 35, L11503, https://doi.org/10.1029/2008GL033644, 2008. 
Arndt, S., Willmes, S., Dierking, W., and Nicolaus, M.: Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations, J. Geophys. Res.-Oceans, 121, 5916–5930, https://doi.org/10.1002/2015JC011504, 2016. 
Ashcraft, I. S. and Long, D. G.: Comparison of methods for melt detection over Greenland using active and passive microwave measurements, Int. J. Remote Sens., 27, 2469–2488, https://doi.org/10.1080/01431160500534465, 2006. 
Belchansky, G. I., Douglas, D. C., and Platonov, N. G.: Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979–2001, J. Climate, 17, 67–80, https://doi.org/10.1175/1520-0442(2004)017{<}0067:DOTASI{>}2.0.CO;2, 2004. 
Download
Short summary
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report on the spatial and temporal variations in the surface snowmelt over the Antarctic sea ice and ice sheet (pan-Antarctic region) based on AMSR-E and AMSR2. Melt detection on sea ice is improved by excluding the effect of open water. The decline in surface snowmelt on the Antarctic ice sheet was very likely linked with the enhanced summer Southern Annular Mode.