Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3811-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-3811-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2
Lei Zheng
School of Geospatial Engineering and Science, Sun Yat-sen University,
Guangzhou 510275, China
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan 430079, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai 519082, China
Chunxia Zhou
CORRESPONDING AUTHOR
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan 430079, China
Tingjun Zhang
CORRESPONDING AUTHOR
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Lanzhou University,
Lanzhou 730000, China
Qi Liang
School of Geospatial Engineering and Science, Sun Yat-sen University,
Guangzhou 510275, China
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan 430079, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai 519082, China
Kang Wang
School of Geographic Sciences, East China Normal University, Shanghai
200241, China
Institute of Arctic and Alpine Research, University of Colorado
Boulder, Boulder, Colorado, 80309, USA
Related authors
No articles found.
Yide Qian, Chunxia Zhou, Sainan Sun, Yiming Chen, Tao Wang, and Baojun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-603, https://doi.org/10.5194/egusphere-2025-603, 2025
Short summary
Short summary
Ephemeral grounding sites appear as ice shelves thin or sea levels rise. Sentinel-1A/B imagery (2014–2023) tracked these sites on Pine Island Ice Shelf, noting their disappearance after a 2020 calving event. Basal melting directly influences these sites, while calving and atmospheric forces are indirect factors. This site could become a key pinning point, impacting future calving. Further modeling is needed.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Cuicui Mu, Xiaoqing Peng, Ran Du, Hebin Liu, Haodong Jin, Benben Liang, Mei Mu, Wen Sun, Chenyan Fan, Xiaodong Wu, Oliver W. Frauenfeld, and Tingjun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-347, https://doi.org/10.5194/essd-2022-347, 2022
Revised manuscript not accepted
Short summary
Short summary
Permafrost warming lead to greenhouse gases release to the atmosphere, resulting in a positive feedback to climate change. But, there are some uncertainties for lacks of observations. Here, we summarized a long-term observations on the meteorological, permafrost, and carbon to publish. This datasets include 5 meteorological stations, 21 boreholes 12 active layer sites, and 10 soil organic carbon contents. These are important to study the response of frozen ground to climate change.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-264, https://doi.org/10.5194/hess-2021-264, 2021
Manuscript not accepted for further review
Short summary
Short summary
Permafrost hydrology is one of the 23 major unsolved problems in hydrology. In this study, we used a stepwise modeling and dynamic parameter method to examine the impact of permafrost on streamflow in the Hulu catchment in western China. We found that: topography and landscape are dominant controls on catchment response; baseflow recession is slower than other regions; precipitation-runoff relationship is non-stationary; permafrost impacts on streamflow mostly at the beginning of melting season.
Cited articles
Abdalati, W. and Steffen, K.: Passive microwave-derived snow melt regions on
the Greenland Ice Sheet, Geophys. Res. Lett., 22, 787–790,
https://doi.org/10.1029/95GL00433, 1995.
Ackley, S. F., Lewis, M. J., Fritsen, C. H., and Xie, H.: Internal melting in
Antarctic sea ice: Development of “gap layers”, Geophys. Res. Lett., 35,
L11503, https://doi.org/10.1029/2008GL033644, 2008.
Arndt, S., Willmes, S., Dierking, W., and Nicolaus, M.: Timing and regional
patterns of snowmelt on Antarctic sea ice from passive microwave satellite
observations, J. Geophys. Res.-Oceans, 121, 5916–5930,
https://doi.org/10.1002/2015JC011504, 2016.
Ashcraft, I. S. and Long, D. G.: Comparison of methods for melt detection
over Greenland using active and passive microwave measurements, Int. J.
Remote Sens., 27, 2469–2488, https://doi.org/10.1080/01431160500534465, 2006.
Belchansky, G. I., Douglas, D. C., and Platonov, N. G.: Duration of the
Arctic sea ice melt season: Regional and interannual variability, 1979–2001, J. Climate, 17, 67–80, https://doi.org/10.1175/1520-0442(2004)017{<}0067:DOTASI{>}2.0.CO;2, 2004.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic
surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change,
8, 1044–1052, https://doi.org/10.1038/s41558-018-0326-3, 2018.
Brandt, R. E., Warren, S. G., Worby, A. P., and Grenfell, T. C.: Surface
albedo of the Antarctic sea ice zone, J. Climate, 18, 3606–3622,
https://doi.org/10.1175/JCLI3489.1, 2005.
Bromwich, D. H., Monaghan, A. J., and Guo, Z.: Modeling the ENSO modulation
of Antarctic climate in the late 1990s with the Polar MM5, J. Climate, 17,
109–132, https://doi.org/10.1175/1520-0442(2004)017{<}0109:MTEMOA{>}2.0.CO;2, 2004.
Cohen, J.: A Coefficient of Agreement for Nominal Scales, Educ. Psychol.
Meas., 20, 37–46, https://doi.org/10.1177/001316446002000104, 1960.
Comiso, J.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, NSIDC, Boulder, Colorado, USA, https://doi.org/10.5067/7Q8HCCWS4I0R, 2017.
Comiso, J. C. and Nishio, F.: Trends in the sea ice cover using enhanced and
compatible AMSR-E, SSM/I, and SMMR data, J. Geophys. Res., 113, C02S07,
https://doi.org/10.1029/2007JC004257, 2008.
Dai, L. and Che, T.: Cross-platform calibration of SMMR, SSM/I and AMSR-E
passive microwave brightness temperature, Sixth Int. Symp. Digit. Earth Data
Process. Appl., 7841, 784103, https://doi.org/10.1117/12.873150, 2010.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Drinkwater, M. R. and Liu, X.: Seasonal to interannual variability in
Antarctic sea-ice surface melt, IEEE T. Geosci. Remote, 38,
1827–1842, https://doi.org/10.1109/36.851767, 2000.
Fleiss, J. L., Levin, B., and Paik, M. C.: Statistical Methods for Rates and
Proportions, 3rd edn., Wiley, Hoboken, New Jersey, 604 pp., 2003.
Hall, D. K., Nghiem, S. V., Schaaf, C. B., DiGirolamo, N. E., and Neumann, G.: Evaluation of surface and near-surface melt characteristics on the
Greenland ice sheet using MODIS and QuikSCAT data, J. Geophys. Res.-Earth, 114, F04006, https://doi.org/10.1029/2009JF001287, 2009.
Hobbs, W. R., Massom, R., Stammerjohn, S., Reid, P., Williams, G., and Meier, W.: A review of recent changes in Southern Ocean sea ice, their drivers and
forcings, Global Planet. Change, 143, 228–250,
https://doi.org/10.1016/J.GLOPLACHA.2016.06.008, 2016.
Imaoka, K., Kachi, M., Fujii, H., Murakami, H., Hori, M., Ono, A., Igarashi, T., Nakagawa, K., Oki, T., Honda, Y., and Shimoda, H.: Global change observation mission (GCOM) for monitoring
carbon, water cycles, and climate change, Proc. IEEE, 98,
717–734, https://doi.org/10.1109/JPROC.2009.2036869, 2010.
Intergovernmental Panel on Climate Change (IPCC): Climate change 2013: the physical science basis. Fifth assessment report of the intergovernmental panel on climate change, Cambridge Univ. Press, Cambridge, UK, 2014.
Joshi, M., Merry, C. J., Jezek, K. C., and Bolzan, J. F.: An edge detection
technique to estimate melt duration, season and melt extent on the Greenland
Ice Sheet using Passive Microwave Data, Geophys. Res. Lett., 28,
3497–3500, https://doi.org/10.1029/2000gl012503, 2001.
Kang, D. H., Barros, A. P., and Dery, S. J.: Evaluating Passive Microwave
Radiometry for the Dynamical Transition From Dry to Wet Snowpacks, IEEE
T. Geosci. Remote, 52, 3–15, 2014.
Knowles, K., Savoie, M., Armstrong, R., and Brodzik, M. J.: AMSR-E/Aqua Daily EASE-Grid Brightness Temperatures, Version 1, Southern Hemisphere, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/XIMNXRTQVMOX (last access: 20 January 2018), 2006.
Koh, G. and Jordan, R.: Sub-surface melting in a seasonal snow cover, J.
Glaciol., 41, 474–482, https://doi.org/10.3189/S002214300003481X, 1995.
Kwok, R., Comiso, J. C., Kwok, R., and Comiso, J. C.: Southern Ocean Climate
and Sea Ice Anomalies Associated with the Southern Oscillation, J. Climate,
15, 487–501, https://doi.org/10.1175/1520-0442(2002)015{<}0487:SOCASI{>}2.0.CO;2, 2002.
Liang, L., Guo, H., Li, X., and Cheng, X.: Automated ice-sheet snowmelt
detection using microwave radiometer measurements, Polar Res., 32, 1–13,
https://doi.org/10.3402/polar.v32i0.19746, 2013.
Liu, H., Wang, L., and Jezek, K. C.: Wavelet-transform based edge detection
approach to derivation of snowmelt onset, end and duration from satellite
passive microwave measurements, Int. J. Remote Sens., 26, 4639–4660,
https://doi.org/10.1080/01431160500213342, 2005.
Lyu, H., Mccoll, K. A., Li, X., Derksen, C., Berg, A., Black, T. A.,
Euskirchen, E., Loranty, M., Pulliainen, J., Rautiainen, K., Rowlandson, T.,
Roy, A., Royer, A., Langlois, A., Stephens, J., Lu, H., and Entekhabi, D.:
Validation of the SMAP freeze/thaw product using categorical triple
collocation, Remote Sens. Environ., 205, 329–337,
https://doi.org/10.1016/j.rse.2017.12.007, 2017.
Markus, T. and Cavalieri, D. J.: Snow Depth Distribution Over Sea Ice in the Southern Ocean from Satellite Passive Microwave Data, in: Antarctic Sea Ice: Physical Processes, Interactions and Variability, Vol. 74, 19–39, American Geophysical Union, Washington, DC, USA, 1998.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice
melt onset, freezeup, and melt season length, J. Geophys. Res.-Oceans, 114,
C12024, https://doi.org/10.1029/2009JC005436, 2009.
Marshall, G. J.: Trends in the Southern Annular Mode from observations and
reanalyses, J. Climate, 16, 4134–4143,
https://doi.org/10.1175/1520-0442(2003)016{<}4134:TITSAM{>}2.0.CO;2,
2003.
Marshall, G. J.: Half-century seasonal relationships between the Southern
Annular Mode and Antarctic temperatures, Int. J. Climatol., 27, 373–383,
https://doi.org/10.1002/joc.1407, 2007.
Meier, W. N. and Stroeve, J.: Comparison of sea-ice extent and ice-edge
location estimates from passive microwave and enhanced-resolution
scatterometer data, Ann. Glaciol., 48, 65–70,
https://doi.org/10.3189/172756408784700743, 2008.
Meredith, M. P., Stammerjohn, S. E., Venables, H. J., Ducklow, H. W.,
Martinson, D. G., Iannuzzi, R. A., Leng, M. J., van Wessem, J. M., Reijmer, C. H., and Barrand, N. E.: Changing distributions of sea ice melt and
meteoric water west of the Antarctic Peninsula, Deep-Sea Res. Pt. II, 139, 40–57, https://doi.org/10.1016/j.dsr2.2016.04.019, 2017.
Monaghan, A. J., Bromwich, D. H., Chapman, W., and Comiso, J. C.: Recent
variability and trends of Antarctic near-surface temperature, J. Geophys.
Res.-Atmos., 113, D04105, https://doi.org/10.1029/2007JD009094, 2008.
Mote, T. L. and Anderson, M. R.: Variations in snowpack melt on the
Greenland ice sheet based on passive-microwave measurements, J. Glaciol.,
41, 51–60, 1995.
Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P., Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C.,
Powers, H. H., Ryczek, M., Stone, G., and Wille, J. D.: January 2016
extensive summer melt in West Antarctica favoured by strong El Niño,
Nat. Commun., 8, 15799, https://doi.org/10.1038/ncomms15799, 2017.
Oza, S. R., Singh, R. K. K., Vyas, N. K., and Sarkar, A.: Study of
inter-annual variations in surface melting over Amery Ice Shelf, East
Antarctica, using space-borne scatterometer data, J. Earth Syst. Sci.,
120, 329–336, 2011.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012.
Picard, G. and Fily, M.: Surface melting observations in Antarctica by
microwave radiometers: Correcting 26-year time series from changes in
acquisition hours, Remote Sens. Environ., 104, 325–336, 2006.
Picard, G., Fily, M., and Gallee, H.: Surface melting derived from microwave
radiometers: A climatic indicator in Antarctica, Ann. Glaciol., 46, 29–34,
https://doi.org/10.3189/172756407782871684, 2007.
Ramage, J. M. and Isacks, B. L.: Determination of melt-onset and refreeze
timing on southeast Alaskan icefields using SSM/I diurnal amplitude
variations, Ann. Glaciol., 34, 391–398, https://doi.org/10.3189/172756402781817761,
2002.
Ramage, J. M. and Isacks, B. L.: Interannual variations of snowmelt and
refreeze timing on southeast-Alaskan icefields, U.S.A., J. Glaciol.,
49, 102–116, https://doi.org/10.3189/172756503781830908, 2003.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Ridley, J.: Surface melting on Antarctic Peninsula ice shelves detected by
passive microwave sensors, Geophys. Res. Lett., 20, 2639–2642,
https://doi.org/10.1029/93GL02611, 1993.
Ropelewski, C. F., Jones, P. D., Ropelewski, C. F., and Jones, P. D.: An
Extension of the Tahiti–Darwin Southern Oscillation Index, Mon. Weather
Rev., 115, 2161–2165, https://doi.org/10.1175/1520-0493(1987)115{<}2161:AEOTTS{>}2.0.CO;2, 1987.
Scambos, T., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between
climate warning and break-up of ice shelves in the Antarctic Peninsula, J.
Glaciol., 46, 516–530, https://doi.org/10.3189/172756500781833043, 2000.
Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R., and Lubin, D.:
Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic
Surface Melt, J. Climate, 32, 665–684, https://doi.org/10.1175/JCLI-D-18-0233.1, 2018.
Semmens, K. and Ramage, J.: Melt patterns and dynamics in Alaska and
Patagonia derived from passive microwave brightness temperatures., Remote
Sens.-Basel, 6, 603–620, https://doi.org/10.3390/rs6010603, 2014.
Serreze, M. G., Maslanik, J. A., Scharfen, G. R., Barry, R. G., and Robinson, D. A.: Interannual variations in snow melt over Arctic sea ice and
relationships to atmospheric forcings, Ann. Glaciol., 17, 327–331,
https://doi.org/10.3189/S0260305500013057, 1993.
Smith, D. M.: Observation of perennial Arctic sea ice melt and freeze-up
using passive microwave data, J. Geophys. Res.-Oceans, 103,
27753–27769, https://doi.org/10.1029/98JC02416, 1998.
Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X., and Rind, D.:
Trends in Antarctic annual sea ice retreat and advance and their relation to
El Niño–Southern Oscillation and Southern Annular Mode variability, J.
Geophys. Res., 113, C03S90, https://doi.org/10.1029/2007JC004269, 2008.
Steffen, K.: Surface energy exchange at the equilibrium line on the
Greenland ice sheet during onset of melt, Ann. Glaciol., 21, 13–18, 1995.
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.:
Changes in Arctic melt season and implifications for sea ice loss, Geophys.
Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Stroeve, J. C., Mioduszewski, J. R., Rennermalm, A., Boisvert, L. N., Tedesco, M., and Robinson, D.: Investigating the local-scale influence of sea ice on Greenland surface melt, The Cryosphere, 11, 2363–2381, https://doi.org/10.5194/tc-11-2363-2017, 2017.
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and
Huybrechts, P.: Melt-induced speed-up of Greenland ice sheet offset by
efficient subglacial drainage, Nature, 469, 521–524,
https://doi.org/10.1038/nature09740, 2011.
Tanaka, Y., Tateyama, K., Kameda, T., and Hutchings, J. K.: Estimation of
melt pond fraction over high-concentration Arctic sea ice using AMSR-E
passive microwave data, J. Geophys. Res.-Oceans, 121, 7056–7072,
https://doi.org/10.1002/2016JC011876, 2016.
Tedesco, M.: Snowmelt detection over the Greenland ice sheet from SSM/I
brightness temperature daily variations, Geophys. Res. Lett., 34, L02504,
https://doi.org/10.1029/2006GL028466, 2007.
Tedesco, M.: Assessment and development of snowmelt retrieval algorithms
over Antarctica from K-band spaceborne brightness temperature (1979–2008),
Remote Sens. Environ., 113, 979–997, https://doi.org/10.1016/j.rse.2009.01.009,
2009.
Tedesco, M. and Monaghan, A. J.: An updated Antarctic melt record through
2009 and its linkages to high-latitude and tropical climate variability,
Geophys. Res. Lett., 36, L18502, https://doi.org/10.1029/2009GL039186, 2009.
Tedesco, M., Abdalati, W., and Zwally, H. J.: Persistent surface snowmelt
over Antarctica (1987–2006) from 19.35 GHz brightness temperatures,
Geophys. Res. Lett., 34, L18504, https://doi.org/10.1029/2007gl031199, 2007.
The IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Thompson, D. W. J. and Solomon, S.: Interpretation of recent Southern
Hemisphere climate change, Science, 296, 895–899,
https://doi.org/10.1126/science.1069270, 2002.
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749,
https://doi.org/10.1038/ngeo1296, 2011.
Turner, J.: The El Niño-Southern Oscillation and Antarctica, Int. J.
Climatol., 24, 1–31, https://doi.org/10.1002/joc.965, 2004.
van den Broeke, M.: Strong surface melting preceded collapse of Antarctic
Peninsula ice shelf, Geophys. Res. Lett., 32, L12815,
https://doi.org/10.1029/2005GL023247, 2005.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de
Berg, W., van Meijgaard, E., Velicogna, I., and Bert, W.: Partitioning recent
Greenland mass loss, Science, 326, 984–986,
https://doi.org/10.1126/science.1178176, 2009.
van den Broeke, M., König-Langlo, G., Picard, G., Kuipers Munneke, P.
and Lenaerts, J.: Surface energy balance, melt and sublimation at Neumayer
Station, East Antarctica, Antarct. Sci., 22, 87–96,
https://doi.org/10.1017/S0954102009990538, 2010a.
van den Broeke, M., Bus, C., Ettema, J., and Smeets, P.: Temperature
thresholds for degree-day modelling of Greenland ice sheet melt rates,
Geophys. Res. Lett., 37, L18501, https://doi.org/10.1029/2010GL044123, 2010b.
Willmes, S., Bareiss, J., Haas, C., and Nicolaus, M.: The importance of
diurnal processes for the Seasonal cycle of Sea-ice microwave brightness
temperatures during early Summer in the Weddell Sea, Antarctica, Ann.
Glaciol., 44, 297–302, https://doi.org/10.3189/172756406781811817, 2006.
Willmes, S., Haas, C., Nicolaus, M., and Bareiss, J.: Satellite microwave
observations of the interannual variability of snowmelt on sea ice in the
Southern Ocean, J. Geophys. Res., 114, C03006, https://doi.org/10.1029/2008JC004919,
2009.
Zheng, L., Zhou, C., Liu, R., and Sun, Q.: Antarctic Snowmelt Detected by
Diurnal Variations of AMSR-E Brightness Temperature, Remote Sens.-Basel, 10,
1391, https://doi.org/10.3390/rs10091391, 2018.
Zheng, L., Zhou, C., and Liang, Q.: Variations in Antarctic Peninsula snow
liquid water during 1999–2017 revealed by merging radiometer, scatterometer
and model estimations, Remote Sens. Environ., 232, 111219,
https://doi.org/10.1016/j.rse.2019.111219, 2019.
Zheng, L., Zhou, C., and Wang, K.: Enhanced winter snowmelt in the Antarctic
Peninsula: Automatic snowmelt identification from radar scatterometer,
Remote Sens. Environ., 246, 111835, https://doi.org/10.1016/j.rse.2020.111835, 2020.
Zwally, H. J.: Microwave Emissivity and Accumulation Rate of Polar Firn, J.
Glaciol., 18, 195–215, https://doi.org/10.3189/S0022143000021304, 1977.
Zwally, H. J. and Fiegles, S.: Extent and duration of Antarctic surface
melting, J. Glaciol., 40, 463–475, https://doi.org/10.1017/S0022143000012338,
1994.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.: Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow, Science,
297, 218–222, https://doi.org/10.1126/science.1072708, 2002.
Short summary
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report on the spatial and temporal variations in the surface snowmelt over the Antarctic sea ice and ice sheet (pan-Antarctic region) based on AMSR-E and AMSR2. Melt detection on sea ice is improved by excluding the effect of open water. The decline in surface snowmelt on the Antarctic ice sheet was very likely linked with the enhanced summer Southern Annular Mode.
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report...