Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3811-2020
https://doi.org/10.5194/tc-14-3811-2020
Research article
 | 
09 Nov 2020
Research article |  | 09 Nov 2020

Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2

Lei Zheng, Chunxia Zhou, Tingjun Zhang, Qi Liang, and Kang Wang

Related authors

Ephemeral grounding on the Pine Island Ice Shelf, West Antarctica, from 2014 to 2023
Yide Qian, Chunxia Zhou, Sainan Sun, Yiming Chen, Tao Wang, and Baojun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-603,https://doi.org/10.5194/egusphere-2025-603, 2025
Short summary
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024,https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
A Comprehensive Dataset for Earth System Models in a Permafrost Region: Meteorological, Permafrost, and Carbon Observations (2011–2020) in Northeastern Qinghai-Tibet Plateau
Cuicui Mu, Xiaoqing Peng, Ran Du, Hebin Liu, Haodong Jin, Benben Liang, Mei Mu, Wen Sun, Chenyan Fan, Xiaodong Wu, Oliver W. Frauenfeld, and Tingjun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-347,https://doi.org/10.5194/essd-2022-347, 2022
Revised manuscript not accepted
Short summary
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022,https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai–Tibet Plateau
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022,https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary

Cited articles

Abdalati, W. and Steffen, K.: Passive microwave-derived snow melt regions on the Greenland Ice Sheet, Geophys. Res. Lett., 22, 787–790, https://doi.org/10.1029/95GL00433, 1995. 
Ackley, S. F., Lewis, M. J., Fritsen, C. H., and Xie, H.: Internal melting in Antarctic sea ice: Development of “gap layers”, Geophys. Res. Lett., 35, L11503, https://doi.org/10.1029/2008GL033644, 2008. 
Arndt, S., Willmes, S., Dierking, W., and Nicolaus, M.: Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations, J. Geophys. Res.-Oceans, 121, 5916–5930, https://doi.org/10.1002/2015JC011504, 2016. 
Ashcraft, I. S. and Long, D. G.: Comparison of methods for melt detection over Greenland using active and passive microwave measurements, Int. J. Remote Sens., 27, 2469–2488, https://doi.org/10.1080/01431160500534465, 2006. 
Belchansky, G. I., Douglas, D. C., and Platonov, N. G.: Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979–2001, J. Climate, 17, 67–80, https://doi.org/10.1175/1520-0442(2004)017{<}0067:DOTASI{>}2.0.CO;2, 2004. 
Download
Short summary
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report on the spatial and temporal variations in the surface snowmelt over the Antarctic sea ice and ice sheet (pan-Antarctic region) based on AMSR-E and AMSR2. Melt detection on sea ice is improved by excluding the effect of open water. The decline in surface snowmelt on the Antarctic ice sheet was very likely linked with the enhanced summer Southern Annular Mode.
Share