Articles | Volume 14, issue 9
Research article
04 Sep 2020
Research article |  | 04 Sep 2020

Strain response and energy dissipation of floating saline ice under cyclic compressive stress

Mingdong Wei, Arttu Polojärvi, David M. Cole, and Malith Prasanna

Related authors

A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Jari Haapala, and Arttu Polojärvi
The Cryosphere Discuss.,,, 2023
Revised manuscript accepted for TC
Short summary
The flexural strength of bonded ice
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967,,, 2021
Short summary
Creep and fracture of warm columnar freshwater ice
Iman E. Gharamti, John P. Dempsey, Arttu Polojärvi, and Jukka Tuhkuri
The Cryosphere, 15, 2401–2413,,, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Ice Physics
Deformation lines in Arctic sea ice: intersection angle distribution and mechanical properties
Damien Ringeisen, Nils Hutter, and Luisa von Albedyll
The Cryosphere, 17, 4047–4061,,, 2023
Short summary
Sea ice thickness from air-coupled flexural waves
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, and Tor Arne Johansen
The Cryosphere, 15, 2939–2955,,, 2021
Short summary
Laboratory study of the properties of frazil ice particles and flocs in water of different salinities
Christopher C. Schneck, Tadros R. Ghobrial, and Mark R. Loewen
The Cryosphere, 13, 2751–2769,,, 2019
Short summary
The morphology of ice and liquid brine in an environmental scanning electron microscope: a study of the freezing methods
Ľubica Vetráková, Vilém Neděla, Jiří Runštuk, and Dominik Heger
The Cryosphere, 13, 2385–2405,,, 2019
Short summary
Physical and optical characteristics of heavily melted “rotten” Arctic sea ice
Carie M. Frantz, Bonnie Light, Samuel M. Farley, Shelly Carpenter, Ross Lieblappen, Zoe Courville, Mónica V. Orellana, and Karen Junge
The Cryosphere, 13, 775–793,,, 2019
Short summary

Cited articles

Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere, 12, 3419–3438,, 2018. 
Boe, J. L., Hall, A., and Qu, X.: September sea-ice cover in the Arctic Ocean projected to vanish by 2100, Nat. Geosci., 2, 341–343,, 2009. 
Bond, P. E. and Langhorne, P. J.: Fatigue behavior of cantilever beams of saline ice, J. Cold Reg. Eng., 11, 99–112,, 1997. 
Cheng, S., Tsarau, A., Evers, K. U., and Shen, H.: Floe size effect on gravity wave propagation through ice covers, J. Geophys. Res.-Oceans, 124, 320–334,, 2019. 
Cole, D. M.: Reversed direct-stress testing of ice: Initial experimental results and analysis, Cold Reg. Sci. Technol., 18, 303–321,, 1990. 
Short summary
Laboratory-scale work on saline ice is usually limited to the use of dry isothermal specimens. Here we developed techniques for conducting floating-ice experiments. The mechanical behavior of floating-ice specimens under cyclic compression was compared with that of dry specimens. Moreover, both of them were successfully analyzed using a theoretical model. Results demonstrate the importance of the work on warm and floating ice, increasingly existing in the polar regions due to climate change.