Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2835-2020
https://doi.org/10.5194/tc-14-2835-2020
Research article
 | 
03 Sep 2020
Research article |  | 03 Sep 2020

Soil respiration of alpine meadow is controlled by freeze–thaw processes of active layer in the permafrost region of the Qinghai–Tibet Plateau

Junfeng Wang, Qingbai Wu, Ziqiang Yuan, and Hojeong Kang

Related authors

An integrated dataset of ground hydrothermal regimes and soil nutrients monitored in some previously burned areas in hemiboreal forests in Northeast China during 2016–2022
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024,https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Brief communication: Evaluation and inter-comparisons of Qinghai–Tibet Plateau permafrost maps based on a new inventory of field evidence
Bin Cao, Tingjun Zhang, Qingbai Wu, Yu Sheng, Lin Zhao, and Defu Zou
The Cryosphere, 13, 511–519, https://doi.org/10.5194/tc-13-511-2019,https://doi.org/10.5194/tc-13-511-2019, 2019
Short summary
The physical properties of coarse-fragment soils and their effects on permafrost dynamics: a case study on the central Qinghai–Tibetan Plateau
Shuhua Yi, Yujie He, Xinlei Guo, Jianjun Chen, Qingbai Wu, Yu Qin, and Yongjian Ding
The Cryosphere, 12, 3067–3083, https://doi.org/10.5194/tc-12-3067-2018,https://doi.org/10.5194/tc-12-3067-2018, 2018
Short summary
Consumption of atmospheric methane by the Qinghai–Tibet Plateau alpine steppe ecosystem
Hanbo Yun, Qingbai Wu, Qianlai Zhuang, Anping Chen, Tong Yu, Zhou Lyu, Yuzhong Yang, Huijun Jin, Guojun Liu, Yang Qu, and Licheng Liu
The Cryosphere, 12, 2803–2819, https://doi.org/10.5194/tc-12-2803-2018,https://doi.org/10.5194/tc-12-2803-2018, 2018
Short summary
Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai–Tibet Plateau, China
Qingbai Wu, Zhongqiong Zhang, Siru Gao, and Wei Ma
The Cryosphere, 10, 1695–1706, https://doi.org/10.5194/tc-10-1695-2016,https://doi.org/10.5194/tc-10-1695-2016, 2016

Related subject area

Discipline: Frozen ground | Subject: Field Studies
Spectral induced polarization imaging to monitor seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024,https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Spring-water temperature suggests widespread occurrence of Alpine permafrost in pseudo-relict rock glaciers
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
EGUsphere, https://doi.org/10.5194/egusphere-2023-2689,https://doi.org/10.5194/egusphere-2023-2689, 2024
Short summary
Brief communication: Alternation of thaw zones and deep permafrost in the cold climate conditions of the East Siberian Mountains, Suntar-Khayata Range
Robert Sysolyatin, Sergei Serikov, Anatoly Kirillin, Andrey Litovko, and Maxim Sivtsev
The Cryosphere, 17, 4601–4608, https://doi.org/10.5194/tc-17-4601-2023,https://doi.org/10.5194/tc-17-4601-2023, 2023
Short summary
Brief communication: Combining borehole temperature, borehole piezometer and cross-borehole electrical resistivity tomography measurements to investigate seasonal changes in ice-rich mountain permafrost
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023,https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Spectral induced polarization imaging to investigate an ice-rich mountain permafrost site in Switzerland
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022,https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary

Cited articles

Balogh, J., Pintér, K., Fóti, S., Cserhalmi, D., Papp, M., and Nagy, Z.: Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands, Soil Biol. Biochem., 43, 1006–1013, 2011. 
Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the global soil respiration record, Nature, 464, 579–582, 2010. 
Brooks, P. D., Schmidt, S. K., and Williams, M. W.: Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes, Oecologia, 110, 403–413, 1997. 
Celis, G., Mauritz, M., Bracho, R., Salmon, V. G., Webb, E. E., Hutchings, J., Natali, S. M., Schädel, C., Crummer, K. G., and Schuur, E. A. G.: Tundra is a consistent source of CO2 at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements, J. Geophys. Res.-Biogeo., 122, 1471–1485, https://doi.org/10.1002/2016jg003671, 2017. 
Chen, B., Liu, S., Ge, J., and Chu, J.: Annual and seasonal variations of Q10 soil respiration in the sub-alpine forests of the Eastern Qinghai-Tibet Plateau, China, Soil Biol. Biochem., 42, 1735–1742, 2010. 
Download
Short summary
The active layer, a buffer between permafrost and the atmosphere, is more sensitive and responds more quickly to climate change. How the freeze–thaw action at different stages regulates carbon emissions is still unclear. We conducted 2-year continuous in situ measurements in an alpine meadow permafrost ecosystem in the Qinghai–Tibet Plateau and found the freeze–thaw process modified the Rs dynamics differently in different stages. Results suggest great changes in freeze–thaw process patterns.