Articles | Volume 14, issue 6
https://doi.org/10.5194/tc-14-1795-2020
https://doi.org/10.5194/tc-14-1795-2020
Research article
 | Highlight paper
 | 
04 Jun 2020
Research article | Highlight paper |  | 04 Jun 2020

New observations of the distribution, morphology and dissolution dynamics of cryogenic gypsum in the Arctic Ocean

Jutta E. Wollenburg, Morten Iversen, Christian Katlein, Thomas Krumpen, Marcel Nicolaus, Giulia Castellani, Ilka Peeken, and Hauke Flores

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to revisions (further review by editor and referees) (19 Feb 2020) by Florent Dominé
AR by Jutta Wollenburg on behalf of the Authors (23 Mar 2020)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (03 Apr 2020) by Florent Dominé
AR by Jutta Wollenburg on behalf of the Authors (03 Apr 2020)  Author's response   Manuscript 
ED: Publish as is (07 Apr 2020) by Florent Dominé
AR by Jutta Wollenburg on behalf of the Authors (08 Apr 2020)  Manuscript 
Download
Short summary
Based on an observed omnipresence of gypsum crystals, we concluded that their release from melting sea ice is a general feature in the Arctic Ocean. Individual gypsum crystals sank at more than 7000 m d−1, suggesting that they are an important ballast mineral. Previous observations found gypsum inside phytoplankton aggregates at 2000 m depth, supporting gypsum as an important driver for pelagic-benthic coupling in the ice-covered Arctic Ocean.