Articles | Volume 14, issue 4
https://doi.org/10.5194/tc-14-1437-2020
https://doi.org/10.5194/tc-14-1437-2020
Research article
 | 
30 Apr 2020
Research article |  | 30 Apr 2020

Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement

Stephan Gruber

Related authors

In situ observations of the Swiss periglacial environment using GNSS instruments
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe​​​​​​​ Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza​​​​​​​, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022,https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022,https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
A repository of measured soil freezing characteristic curves: 1921 to 2021
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022,https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021,https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary
The surface energy balance in a cold and arid permafrost environment, Ladakh, Himalayas, India
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere, 15, 2273–2293, https://doi.org/10.5194/tc-15-2273-2021,https://doi.org/10.5194/tc-15-2273-2021, 2021
Short summary

Related subject area

Discipline: Frozen ground | Subject: Instrumentation
Brief communication: Monitoring active layer dynamics using a lightweight nimble ground-penetrating radar system – a laboratory analogue test case
Emmanuel Léger, Albane Saintenoy, Mohammed Serhir, François Costard, and Christophe Grenier
The Cryosphere, 17, 1271–1277, https://doi.org/10.5194/tc-17-1271-2023,https://doi.org/10.5194/tc-17-1271-2023, 2023
Short summary
Brief communication: Unravelling the composition and microstructure of a permafrost core using X-ray computed tomography
Jan Nitzbon, Damir Gadylyaev, Steffen Schlüter, John Maximilian Köhne, Guido Grosse, and Julia Boike
The Cryosphere, 16, 3507–3515, https://doi.org/10.5194/tc-16-3507-2022,https://doi.org/10.5194/tc-16-3507-2022, 2022
Short summary
A distributed temperature profiling system for vertically and laterally dense acquisition of soil and snow temperature
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022,https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary

Cited articles

Anonymous: Mass‐balance terms, J. Glaciol., 8, 3–7, 1969. a
Arenson, L. U., Kääb, A., and O'Sullivan, A.: Detection and analysis of ground deformation in permafrost environments, Permafrost Periglac., 27, 339–351, https://doi.org/10.1002/ppp.1932, 2016. a
Bartsch, A., Leibman, M., Strozzi, T., Khomutov, A., Widhalm, B., Babkina, E., Mullanurov, D., Ermokhina, K., Kroisleitner, C., and Bergstedt, H.: Seasonal progression of ground displacement identified with satellite radar interferometry and the impact of unusually warm conditions on permafrost at the Yamal Peninsula in 2016, Remote Sensing, 11, 1865, https://doi.org/10.3390/rs11161865, 2019. a, b
Fahey, B. D.: Seasonal frost heave and frost penetration measurements in the indian peaks region of the Colorado Front Range, Arctic Alpine Res., 6, 63–70, https://doi.org/10.2307/1550370, 1974. a
Government of Canada: Yellowknife A, daily data reports, available at: http://climate.weather.gc.ca/climate_data/daily_data_e.html?StationID=51058 (last access: 21 July 2019), 2019. a
Download
Short summary
A simple method to record heave and subsidence of the land surface at specific field locations is described. Hourly observations from three sites, over two winters and one summer, are analyzed and discussed. The data are rich in features that point to the influence of freezing and thawing and of wetting and drying of the soil. This type of observation may offer new insight into the processes of heat and mass transfer in soil and help to monitor climate change impacts.