Articles | Volume 13, issue 3
https://doi.org/10.5194/tc-13-969-2019
https://doi.org/10.5194/tc-13-969-2019
Research article
 | 
22 Mar 2019
Research article |  | 22 Mar 2019

Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect

Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Juilin Li on behalf of the Authors (01 Feb 2019)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (12 Feb 2019) by Dirk Notz
RR by Anonymous Referee #1 (12 Feb 2019)
RR by Abhay Devasthale (22 Feb 2019)
ED: Publish as is (22 Feb 2019) by Dirk Notz
AR by Juilin Li on behalf of the Authors (27 Feb 2019)
Download
Short summary
Observed summer Arctic sea ice retreat has been faster than simulated by the average CMIP5 models, most of which exclude falling ice particles from their radiative calculations. We use controlled CESM1-CAM5 simulations to show for the first time that snowflakes' radiative effects can accelerate sea ice retreat. September retreat rates are doubled above current CO2 levels, highlighting falling ice radiative effects as a high priority for inclusion in future modelling of the Arctic.