Articles | Volume 13, issue 2
https://doi.org/10.5194/tc-13-647-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-647-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
William J. Riley
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Patrick M. Crill
Department of Geological Sciences, Stockholm University, Stockholm, Sweden
Robert F. Grant
Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
Virginia I. Rich
Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
Scott R. Saleska
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
Related authors
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Elsa Abs, Christoph Keuschnig, Pierre Amato, Chris Bowler, Eric Capo, Alexander Chase, Luciana Chavez Rodriguez, Abraham Dabengwa, Thomas Dussarrat, Thomas Guzman, Linnea Honeker, Jenni Hultman, Kirsten Küsel, Zhen Li, Anna Mankowski, William Riley, Scott Saleska, and Lisa Wingate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1716, https://doi.org/10.5194/egusphere-2025-1716, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Meta-omics technologies offer new tools to understand how microbial and plant functional diversity shape biogeochemical cycles across ecosystems. This perspective explores how integrating omics data with ecological and modeling approaches can improve our understanding of greenhouse gas fluxes and nutrient dynamics, from soils to clouds, and from the past to the future. We highlight challenges and opportunities for scaling omics insights from local processes to Earth system models.
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025, https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Short summary
A new mathematical formulation of the dynamic energy budget model is presented for the growth of biological organisms. This new formulation combines mass conservation law and chemical kinetics theory and is computationally faster than the standard formulation of dynamic energy budget models. In simulating the growth of Thalassiosira weissflogii in a nitrogen-limiting chemostat, the new model is as good as the standard dynamic energy budget model using almost the same parameter values.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340, https://doi.org/10.5194/hess-2024-340, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We explore tile drainage’ impacts on the integrated hydrology-biogeochemistry-plant system, using ecosys with soil oxygen and microbe dynamics. We found that tile drainage lowers soil water content and improves soil oxygen levels, which helps crops grow better, especially during wet springs, and the developed root system also helps mitigate drought stress on dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021, https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Richard Wehr and Scott R. Saleska
Biogeosciences, 18, 13–24, https://doi.org/10.5194/bg-18-13-2021, https://doi.org/10.5194/bg-18-13-2021, 2021
Short summary
Short summary
Water and carbon exchange between plants and the atmosphere is governed by stomata: adjustable pores in the surfaces of leaves. The combined gas conductance of all the stomata in a canopy has long been estimated using an equation that is shown here to be systematically incorrect because it relies on measurements that are generally inadequate. An alternative approach is shown to be more accurate in all probable scenarios and to imply different responses of stomatal conductance to the environment.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Roger Seco, Thomas Holst, Mikkel Sillesen Matzen, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Janne Rinne, and Riikka Rinnan
Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, https://doi.org/10.5194/acp-20-13399-2020, 2020
Short summary
Short summary
Northern ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs). We measured VOC fluxes from a subarctic permafrost-free fen and its adjacent lake in northern Sweden. The graminoid-dominated fen emitted mainly isoprene during the peak of the growing season, with a pronounced response to increasing temperatures stronger than assumed by biogenic emission models. The lake was a sink of acetone and acetaldehyde during both periods measured.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Cited articles
Ahlström, A., Schurgers, G., and Smith, B.: The large influence of
climate model bias on terrestrial carbon cycle simulations, Environ. Res.
Lett., 12, 014004, https://doi.org/10.1088/1748-9326/12/1/014004, 2017.
Åkerman, H. J. and Johansson, M.: Thawing permafrost and thicker active
layers in sub-arctic Sweden, Permafrost Periglac., 19, 279–292,
https://doi.org/10.1002/ppp.626, 2008.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P.,
Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the Land and Ocean
Components of the Global Carbon Cycle in the CMIP5 Earth System Models,
J. Climate, 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B.,
Bayer, A. D., Bondeau, A., Calle, L., Chini, L. P., Gasser, T., Fader, M.,
Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S.,
Pugh, T. A. M., Robertson, E., Viovy, N., Yue, C., and Zaehle, S.: Historical
carbon dioxide emissions caused by land-use changes are possibly larger than
assumed, Nat. Geosci., 10, 79–84, https://doi.org/10.1038/ngeo2882, 2017.
Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R., and
Bastviken, D.: Non-methane volatile organic compound flux from a subarctic
mire in Northern Sweden, Tellus B, 60, 226–237,
https://doi.org/10.1111/j.1600-0889.2007.00331.x, 2008a.
Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R., and
Bastviken, D.: Total hydrocarbon flux dynamics at a subarctic mire in
northern Sweden, J. Geophys. Res., 113, G03026, https://doi.org/10.1029/2008JG000703,
2008b.
Bäckstrand, K., Crill, P. M., Jackowicz-Korczyñski, M., Mastepanov,
M., Christensen, T. R., and Bastviken, D.: Annual carbon gas budget for a
subarctic peatland, Northern Sweden, Biogeosciences, 7, 95–108,
https://doi.org/10.5194/bg-7-95-2010, 2010.
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M.,
Kållberg, P., Kobayashi, S., Uppala, S. and Simmons, A.: The ERA-Interim
archive, version 2.0, ERA report series, 1. Technical Report, ECMWF, 23 pp.,
available at: https://www.ecmwf.int/node/8174 (last access: 15 February
2019), 2011.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim.
Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Callaghan, T. V., Bergholm, F., Christensen, T. R., Jonasson, C., Kokfelt,
U., and Johansson, M.: A new climate era in the sub-Arctic: Accelerating
climate changes and multiple impacts, Geophys. Res. Lett., 37, L14705,
https://doi.org/10.1029/2009GL042064, 2010.
Chang, K.-Y., Paw U, K. T., and Chen, S.-H.: The importance of
carbon-nitrogen biogeochemistry on water vapor and carbon fluxes as
elucidated by a multiple canopy layer higher order closure land surface
model, Agr. Forest Meteorol., 259, 60–74,
https://doi.org/10.1016/j.agrformet.2018.04.009, 2018.
Christensen, T. R., Johansson, T., Åkerman, H. J., Mastepanov, M.,
Malmer, N., Friborg, T., Crill, P., and Svensson, B. H.: Thawing sub-arctic
permafrost: Effects on vegetation and methane emissions, Geophys. Res. Lett.,
31, L04501, https://doi.org/10.1029/2003GL018680, 2004.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate
Change: Projections, Commitments and Irreversibility. Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
1029–1136, https://doi.org/10.1017/CBO9781107415324.024, 2013.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P.
Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M.,
Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff,
S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J.
Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A.,
Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R.,
Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G., Williams, M., and Hartley, I.
P.: Limited contribution of permafrost carbon to methane release from thawing
peatlands, Nat. Clim. Change, 7, 507–511, https://doi.org/10.1038/nclimate3328, 2017.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.:
Acceleration of global warming due to carbon-cycle feedbacks in a coupled
climate model, Nature, 408, 184–187, 2000.
Deng, J., Li, C., Frolking, S., Zhang, Y., Bäckstrand, K., and Crill, P.:
Assessing effects of permafrost thaw on C fluxes based on multiyear modeling
across a permafrost thaw gradient at Stordalen, Sweden, Biogeosciences, 11,
4753–4770, https://doi.org/10.5194/bg-11-4753-2014, 2014.
Dimitrov, D. D., Grant, R. F., Lafleur, P. M., and Humphreys, E. R.: Modeling
the effects of hydrology on gross primary productivity and net ecosystem
productivity at Mer Bleue bog, J. Geophys. Res., 116, G04010,
https://doi.org/10.1029/2010JG001586, 2011.
Dimitrov, D. D., Bhatti, J. S., and Grant, R. F.: The transition zones
(ecotone) between boreal forests and peatlands: Ecological controls on
ecosystem productivity along a transition zone between upland black spruce
forest and a poor forested fen in central Saskatchewan, Ecol. Model., 291,
96–108, https://doi.org/10.1016/j.ecolmodel.2014.07.020, 2014.
Dirmeyer, P. A.: A History and Review of the Global Soil Wetness Project
(GSWP), J. Hydrometeorol., 12, 729–749, https://doi.org/10.1175/JHM-D-10-05010.1,
2011.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V.,
Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C.,
Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D.,
Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur,
R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate–Carbon Cycle Feedback Analysis: Results from the C4 MIP Model
Intercomparison, J. Climate, 19, 3337–3353, https://doi.org/10.1175/JCLI3800.1, 2006.
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections
due to Carbon Cycle Feedbacks, J. Climate, 27, 511–526,
https://doi.org/10.1175/JCLI-D-12-00579.1, 2014.
Ghimire, B., Riley, W. J., Koven, C. D., Mu, M., and Randerson, J. T.:
Representing leaf and root physiological traits in CLM improves global carbon
and nitrogen cycling predictions, J. Adv. Model. Earth Syst., 8, 598–613,
https://doi.org/10.1002/2015MS000538, 2016.
Grant, R. F.: Modelling changes in nitrogen cycling to sustain increases in
forest productivity under elevated atmospheric CO2 and contrasting
site conditions, Biogeosciences, 10, 7703–7721,
https://doi.org/10.5194/bg-10-7703-2013, 2013.
Grant, R. F.: Nitrogen mineralization drives the response of forest
productivity to soil warming: Modelling in ecosys vs. measurements from the
Harvard soil heating experiment, Ecol. Model., 288, 38–46,
https://doi.org/10.1016/j.ecolmodel.2014.05.015, 2014.
Grant, R. F.: Ecosystem CO2 and CH4 exchange in a mixed
tundra and a fen within a hydrologically diverse Arctic landscape: 2. Modeled
impacts of climate change, J. Geophys. Res.-Biogeo., 120, 1388–1406,
https://doi.org/10.1002/2014JG002889, 2015.
Grant R. F. and Flanagan L. B.: Modeling stomatal and nonstomatal effects of
water deficits on CO2 fixation in a semiarid grassland, J. Geophys.
Res., 112, G03011, https://doi.org/10.1029/2006JG000302, 2007.
Grant, R. F. and Roulet, N. T.: Methane efflux from boreal wetlands: Theory
and testing of the ecosystem model Ecosys with chamber and tower flux
measurements, Global Biogeochem. Cy., 16, 1054, https://doi.org/10.1029/2001GB001702,
2002.
Grant, R. F., Oechel, W. C., and Ping, C.-L.: Modelling carbon balances of
coastal arctic tundra under changing climate, Glob. Change Biol., 9, 16–36,
https://doi.org/10.1046/j.1365-2486.2003.00549.x, 2003.
Grant, R. F., Black, T. A., Humphreys, E. R., and Morgenstern, K.: Changes in
net ecosystem productivity with forest age following clearcutting of a
coastal Douglas-fir forest: testing a mathematical model with eddy covariance
measurements along a forest chronosequence, Tree Physiol., 27, 115–131,
2007a.
Grant, R. F., Arkebauer, T. J., Dobermann, A., Hubbard, K. G., Schimelfenig,
T. T., Suyker, A. E., Verma, S. B., and Walters, D. T.: Net Biome
Productivity of Irrigated and Rainfed Maize–Soybean Rotations: Modeling vs.
Measurements, Agron. J., 99, 1404, https://doi.org/10.2134/agronj2006.0308, 2007b.
Grant, R. F., Barr, A. G., Black, T. A., Gaumont-Guay, D., Iwashita, H.,
Kidson, J., McCAUGHEY, H., Morgenstern, K., Murayama, S., Nesic, Z., Saigusa,
N., Shashkov, A., and Zha, T.: Net ecosystem productivity of boreal jack pine
stands regenerating from clearcutting under current and future climates,
Glob. Change Biol., 13, 1423–1440, https://doi.org/10.1111/j.1365-2486.2007.01363.x,
2007c.
Grant, R. F., Margolis, H. A., Barr, A. G., Black, T. A., Dunn, A. L.,
Bernier, P. Y., and Bergeron, O.: Changes in net ecosystem productivity of
boreal black spruce stands in response to changes in temperature at diurnal
and seasonal time scales, Tree Physiol., 29, 1–17,
https://doi.org/10.1093/treephys/tpn004, 2009a.
Grant, R. F., Barr, A. G., Black, T. A., Margolis, H. A., Dunn, A. L.,
Metsaranta, J., Wang, S., McCaughey, J. H., and Bourque, C. A.: Interannual
variation in net ecosystem productivity of Canadian forests as affected by
regional weather patterns – A Fluxnet-Canada synthesis, Agr. Forest
Meteorol., 149, 2022–2039, https://doi.org/10.1016/j.agrformet.2009.07.010, 2009b.
Grant, R. F., Hutyra, L. R., Oliveira, R. C., Munger, J. W., Saleska, S. R.,
and Wofsy, S. C.: Modeling the carbon balance of Amazonian rain forests:
resolving ecological controls on net ecosystem productivity, Ecol. Monogr.,
79, 445–463, https://doi.org/10.1890/08-0074.1, 2009c.
Grant, R. F., Barr, A. G., Black, T. A., Margolis, H. A., Mccaughey, J. H.,
and Trofymow, J. A.: Net ecosystem productivity of temperate and boreal
forests after clearcutting – a Fluxnet-Canada measurement and modelling
synthesis, Tellus B, 62, 475–496, https://doi.org/10.1111/j.1600-0889.2010.00500.x,
2010.
Grant, R. F., Kimball, B. A., Conley, M. M., White, J. W., Wall, G. W., and
Ottman, M. J.: Controlled Warming Effects on Wheat Growth and Yield: Field
Measurements and Modeling, Agron. J., 103, 1742–1754,
https://doi.org/10.2134/agronj2011.0158, 2011a.
Grant, R. F., Humphreys, E. R., Lafleur, P. M., and Dimitrov, D. D.:
Ecological controls on net ecosystem productivity of a mesic arctic tundra
under current and future climates, J. Geophys. Res., 116, G01031,
https://doi.org/10.1029/2010JG001555, 2011b.
Grant, R. F., Baldocchi, D. D., and Ma, S.: Ecological controls on net
ecosystem productivity of a seasonally dry annual grassland under current and
future climates: Modelling with ecosys, Agr. Forest Meteorol., 152, 189–200,
https://doi.org/10.1016/j.agrformet.2011.09.012, 2012a.
Grant, R. F., Desai, A. R., and Sulman, B. N.: Modelling contrasting
responses of wetland productivity to changes in water table depth,
Biogeosciences, 9, 4215–4231, https://doi.org/10.5194/bg-9-4215-2012, 2012b.
Grant R. F., Humphreys E. R., and Lafleur P. M.: Ecosystem CO2 and
CH4 exchange in a mixed tundra and a fen within a hydrologically
diverse Arctic landscape: 1. Modeling versus measurements, J. Geophys.
Res.-Biogeo., 120, 1366–1387, https://doi.org/10.1002/2014JG002888, 2015.
Grant, R. F., Mekonnen, Z. A., Riley, W. J., Wainwright, H. M., Graham, D.
and Torn, M. S.: Mathematical Modelling of Arctic Polygonal Tundra with
Ecosys: 1. Microtopography Determines How Active Layer Depths
Respond to Changes in Temperature and Precipitation, J. Geophys.
Res.-Biogeo., 122, 3161–3173, https://doi.org/10.1002/2017JG004035, 2017a.
Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B., and Torn, M. S.:
Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2.
Microtopography Determines How CO2 and CH4 Exchange Responds
to Changes in Temperature and Precipitation: GHG Exchange in Arctic Polygonal
Tundra, J. Geophys. Res.-Biogeo., 122, 3174–3187,
https://doi.org/10.1002/2017JG004037, 2017b.
Guo, D., Wang, H., and Wang, A.: Sensitivity of Historical Simulation of the
Permafrost to Different Atmospheric Forcing Data Sets from 1979 to 2009,
J. Geophys. Res.-Atmos., 122, 12269–12284, https://doi.org/10.1002/2017JD027477, 2017.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M.,
Saleska, S. R., Rich, V. I., and Chanton, J. P.: Changes in peat chemistry
associated with permafrost thaw increase greenhouse gas production, P. Natl.
Acad. Sci. USA, 111, 5819–5824, https://doi.org/10.1073/pnas.1314641111, 2014.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J.,
and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and
Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Johansson, T., Malmer, N., Crill, P. M., Friborg, T., Åkerman, J. H.,
Mastepanov, M., and Christensen, T. R.: Decadal vegetation changes in a
northern peatland, greenhouse gas fluxes and net radiative forcing, Glob.
Change Biol., 12, 2352–2369, https://doi.org/10.1111/j.1365-2486.2006.01267.x, 2006.
Johansson, M., Callaghan, T. V., Bosiö, J., Åkerman, H. J.,
Jackowicz-Korczynski, M., and Christensen, T. R.: Rapid responses of
permafrost and vegetation to experimentally increased snow cover in
sub-arctic Sweden, Environ. Res. Lett., 8, 035025,
https://doi.org/10.1088/1748-9326/8/3/035025, 2013.
Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat,
C., and Ewing, S.: Rapid carbon loss and slow recovery following permafrost
thaw in boreal peatlands, Glob. Change Biol., 23, 1109–1127,
https://doi.org/10.1111/gcb.13403, 2017.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2,
1996.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B. Am.
Meteorol. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kokfelt, U., Reuss, N., Struyf, E., Sonesson, M., Rundgren, M., Skog, G.,
Rosen, P., and Hammarlund, D.: Wetland development, permafrost history and
nutrient cycling inferred from late Holocene peat and lake sediment records
in subarctic Sweden, J. Paleolimn., 44, 327–342,
https://doi.org/10.1007/s10933-010-9406-8, 2010.
Lundin, E. J., Klaminder, J., Giesler, R., Persson, A., Olefeldt, D.,
Heliasz, M., Christensen, T. R., and Karlsson, J.: Is the subarctic landscape
still a carbon sink? Evidence from a detailed catchment balance, Geophys.
Res. Lett., 43, 1988–1995, https://doi.org/10.1002/2015GL066970, 2016.
Malmer, N., Johansson, T., Olsrud, M., and Christensen, T. R.: Vegetation,
climatic changes and net carbon sequestration in a North-Scandinavian
subarctic mire over 30 years, Glob. Change Biol., 11, 1895–1909,
https://doi.org/10.1111/j.1365-2486.2005.01042.x, 2005.
Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Ström,
L., Tamstorf, M. P., and Christensen, T. R.: Large tundra methane burst
during onset of freezing, Nature, 456, 628–630, https://doi.org/10.1038/nature07464,
2008.
McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E.-H.,
Mondav, R., Crill, P. M., Chanton, J. P., Rich, V. I., Tyson, G. W., and
Saleska, S. R.: Methane dynamics regulated by microbial community response to
permafrost thaw, Nature, 514, 478–481, https://doi.org/10.1038/nature13798, 2014.
Mezbahuddin, M., Grant, R. F., and Hirano, T.: Modelling effects of seasonal
variation in water table depth on net ecosystem CO2 exchange of a
tropical peatland, Biogeosciences, 11, 577–599,
https://doi.org/10.5194/bg-11-577-2014, 2014.
Mondav, R., Woodcroft, B. J., Kim, E.-H., McCalley, C. K., Hodgkins, S. B.,
Crill, P. M., Chanton, J., Hurst, G. B., VerBerkmoes, N. C., Saleska, S. R.,
Hugenholtz, P., Rich, V. I., and Tyson, G. W.: Discovery of a novel
methanogen prevalent in thawing permafrost, Nat. Commun., 5, 3212,
https://doi.org/10.1038/ncomms4212, 2014.
Mondav, R., McCalley, C. K., Hodgkins, S. B., Frolking, S., Saleska, S. R.,
Rich, V. I., Chanton, J. P., and Crill, P. M.: Microbial network,
phylogenetic diversity and community membership in the active layer across a
permafrost thaw gradient, Environ. Microbiol., 19, 3201–3218,
https://doi.org/10.1111/1462-2920.13809, 2017.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK
and New York, NY, USA, 659–740, https://doi.org/10.1017/CBO9781107415324.018, 2013.
O'Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy,
M. Z., and Wickland, K. P.: The Effects of Permafrost Thaw on Soil
Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland, Ecosystems,
15, 213–229, https://doi.org/10.1007/s10021-011-9504-0, 2012.
Olefeldt, D. and Roulet, N. T.: Effects of permafrost and hydrology on the
composition and transport of dissolved organic carbon in a subarctic peatland
complex, J. Geophys. Res., 117, G01005 https://doi.org/10.1029/2011JG001819, 2012.
Raz-Yaseef, N., Torn, M. S., Wu, Y., Billesbach, D. P., Liljedahl, A. K.,
Kneafsey, T. J., Romanovsky, V. E., Cook, D. R., and Wullschleger, S. D.:
Large CO2 and CH4 emissions from polygonal tundra during
spring thaw in northern Alaska, Geophys. Res. Lett., 44, 504–513,
https://doi.org/10.1002/2016GL071220, 2017.
Rydén B. E. and Kostov, L.: Thawing and freezing in tundra soil, Ecol.
Bull., 30, 27–54, 1980.
Rydén, B. E., Fors, L., and Kostov, L.: Physical Properties of the Tundra
Soil-Water System at Stordalen, Abisko, Ecol. Bull., 30, 27–54, 1980.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Sonesson, M.: Cryptogams, in: International biological programme – Swedish
tundra biome project, Swedish Natural Science Research Council Ecological
Research Committee, Technical report No. 9, 18–23, 1972.
Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto,
A., and Hatano, R.: Falling atmospheric pressure as a trigger for methane
ebullition from peatland, Global Biogeochem. Cy., 21, GB2003,
https://doi.org/10.1029/2006GB002790, 2007.
van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki,
T., Douville, H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M.
J., Wada, Y., Li, W., Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G.
P., Ellis, R., Hagemann, S., Mao, J., Flanner, M. G., Zampieri, M., Materia,
S., Law, R. M., and Sheffield, J.: LS3MIP (v1.0) contribution to CMIP6: the
Land Surface, Snow and Soil moisture Model Intercomparison Project – aims,
setup and expected outcome, Geosci. Model Dev., 9, 2809–2832,
https://doi.org/10.5194/gmd-9-2809-2016, 2016.
Viovy, N.: CRUNCEP Version 7 – Atmospheric Forcing Data for the Community
Land Model, Research Data Archive at the National Center for Atmospheric
Research, Computational and Information Systems Laboratory, Boulder CO, USA,
2018.
Wickland, K. P., Striegl, R. G., Neff, J. C., and Sachs, T.: Effects of
permafrost melting on CO2 and CH4 exchange of a poorly
drained black spruce lowland, J. Geophys. Res., 111, G02011,
https://doi.org/10.1029/2005JG000099, 2006.
Woodcroft, B. J., Singleton, C. M., Boyd, J. A., Evans, P. N., Emerson, J.
B., Zayed, A. A. F., Hoelzle, R. D., Lamberton, T. O., McCalley, C. K.,
Hodgkins, S. B., Wilson, R. M., Purvine, S. O., Nicora, C. D., Li, C.,
Frolking, S., Chanton, J. P., Crill, P. M., Saleska, S. R., Rich, V. I., and
Tyson, G. W.: Genome-centric view of carbon processing in thawing permafrost,
Nature, https://doi.org/10.1038/s41586-018-0338-1, 2018.
Wu, Z., Ahlström, A., Smith, B., Ardö, J., Eklundh, L., Fensholt, R.,
and Lehsten, V.: Climate data induced uncertainty in model-based estimations
of terrestrial primary productivity, Environ. Res. Lett., 12, 064013,
https://doi.org/10.1088/1748-9326/aa6fd8, 2017.
Yoshimura, K. and Kanamitsu, M.: Dynamical Global Downscaling of Global
Reanalysis, Mon. Weather Rev., 136, 2983–2998, https://doi.org/10.1175/2008MWR2281.1,
2008.
Zaehle, S., Friend, A. D., Friedlingstein, P., Dentener, F., Peylin, P., and
Schulz, M.: Carbon and nitrogen cycle dynamics in the O-CN land surface
model: 2. Role of the nitrogen cycle in the historical terrestrial carbon
balance, Global Biogeochem. Cy., 24, GB1006, https://doi.org/10.1029/2009GB003522,
2010.
Short summary
Permafrost peatlands store large amounts of carbon potentially vulnerable to decomposition under changing climate. We estimated effects of climate forcing biases on carbon cycling at a thawing permafrost peatland in subarctic Sweden. Our results indicate that many climate reanalysis products are cold and wet biased in our study region, leading to erroneous active layer depth and carbon budget estimates. Future studies should recognize the effects of climate forcing uncertainty on carbon cycling.
Permafrost peatlands store large amounts of carbon potentially vulnerable to decomposition under...