Articles | Volume 13, issue 2
https://doi.org/10.5194/tc-13-511-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-511-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Evaluation and inter-comparisons of Qinghai–Tibet Plateau permafrost maps based on a new inventory of field evidence
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Department of Geography & Environmental Studies, Carleton University, Ottawa K1S 5B6, Canada
Tingjun Zhang
CORRESPONDING AUTHOR
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Qingbai Wu
State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Yu Sheng
State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Lin Zhao
School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
Defu Zou
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key Laboratory of Cryospheric Science,
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Related authors
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere, 16, 2701–2708, https://doi.org/10.5194/tc-16-2701-2022, https://doi.org/10.5194/tc-16-2701-2022, 2022
Short summary
Short summary
We implemented a new multi-layer snow scheme in the land surface scheme of ERA5-Land with revised snow densification parameterizations. The revised HTESSEL improved the representation of soil temperature in permafrost regions compared to ERA5-Land; in particular, warm bias in winter was significantly reduced, and the resulting modeled near-surface permafrost extent was improved.
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Short summary
This study reports that ERA5-Land (ERA5L) soil temperature bias in permafrost regions correlates with the bias in air temperature and with maximum snow height. While global reanalyses are important drivers for permafrost study, ERA5L soil data are not well suited for directly informing permafrost research decision making due to their warm bias in winter. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.
Bin Cao, Xiaojing Quan, Nicholas Brown, Emilie Stewart-Jones, and Stephan Gruber
Geosci. Model Dev., 12, 4661–4679, https://doi.org/10.5194/gmd-12-4661-2019, https://doi.org/10.5194/gmd-12-4661-2019, 2019
Short summary
Short summary
GlobSim is a tool for simulating land-surface processes and phenomena at point locations globally, even where no site-specific meteorological observations exist. This is important because simulation can add insight to the analysis of observations or help in anticipating climate-change impacts and because site-specific simulation can help in model evaluation.
Bin Cao, Stephan Gruber, and Tingjun Zhang
Geosci. Model Dev., 10, 2905–2923, https://doi.org/10.5194/gmd-10-2905-2017, https://doi.org/10.5194/gmd-10-2905-2017, 2017
Short summary
Short summary
To derive the air temperature in mountain enviroments, we propose a new downscaling method with a spatially variable magnitude of surface effects. Our findings suggest that the difference between near-surface air temperature and upper-air temerpature is a good proxy of surface effects. It can be used to improve downscaling results, especially in valleys with strong surface effects and cold air pooling during winter.
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Cuicui Mu, Xiaoqing Peng, Ran Du, Hebin Liu, Haodong Jin, Benben Liang, Mei Mu, Wen Sun, Chenyan Fan, Xiaodong Wu, Oliver W. Frauenfeld, and Tingjun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-347, https://doi.org/10.5194/essd-2022-347, 2022
Revised manuscript not accepted
Short summary
Short summary
Permafrost warming lead to greenhouse gases release to the atmosphere, resulting in a positive feedback to climate change. But, there are some uncertainties for lacks of observations. Here, we summarized a long-term observations on the meteorological, permafrost, and carbon to publish. This datasets include 5 meteorological stations, 21 boreholes 12 active layer sites, and 10 soil organic carbon contents. These are important to study the response of frozen ground to climate change.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere, 16, 2701–2708, https://doi.org/10.5194/tc-16-2701-2022, https://doi.org/10.5194/tc-16-2701-2022, 2022
Short summary
Short summary
We implemented a new multi-layer snow scheme in the land surface scheme of ERA5-Land with revised snow densification parameterizations. The revised HTESSEL improved the representation of soil temperature in permafrost regions compared to ERA5-Land; in particular, warm bias in winter was significantly reduced, and the resulting modeled near-surface permafrost extent was improved.
Lin Zhao, Defu Zou, Guojie Hu, Tonghua Wu, Erji Du, Guangyue Liu, Yao Xiao, Ren Li, Qiangqiang Pang, Yongping Qiao, Xiaodong Wu, Zhe Sun, Zanpin Xing, Yu Sheng, Yonghua Zhao, Jianzong Shi, Changwei Xie, Lingxiao Wang, Chong Wang, and Guodong Cheng
Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, https://doi.org/10.5194/essd-13-4207-2021, 2021
Short summary
Short summary
Lack of a synthesis dataset of the permafrost state has greatly limited our understanding of permafrost-related research as well as the calibration and validation of RS retrievals and model simulation. We compiled this dataset, including ground temperature, active layer hydrothermal regimes, and meteorological indexes based on our observational network, and we summarized the basic changes in permafrost and its climatic conditions. It is the first comprehensive dataset on permafrost for the QXP.
Lei Zheng, Chunxia Zhou, Tingjun Zhang, Qi Liang, and Kang Wang
The Cryosphere, 14, 3811–3827, https://doi.org/10.5194/tc-14-3811-2020, https://doi.org/10.5194/tc-14-3811-2020, 2020
Short summary
Short summary
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report on the spatial and temporal variations in the surface snowmelt over the Antarctic sea ice and ice sheet (pan-Antarctic region) based on AMSR-E and AMSR2. Melt detection on sea ice is improved by excluding the effect of open water. The decline in surface snowmelt on the Antarctic ice sheet was very likely linked with the enhanced summer Southern Annular Mode.
Junfeng Wang, Qingbai Wu, Ziqiang Yuan, and Hojeong Kang
The Cryosphere, 14, 2835–2848, https://doi.org/10.5194/tc-14-2835-2020, https://doi.org/10.5194/tc-14-2835-2020, 2020
Short summary
Short summary
The active layer, a buffer between permafrost and the atmosphere, is more sensitive and responds more quickly to climate change. How the freeze–thaw action at different stages regulates carbon emissions is still unclear. We conducted 2-year continuous in situ measurements in an alpine meadow permafrost ecosystem in the Qinghai–Tibet Plateau and found the freeze–thaw process modified the Rs dynamics differently in different stages. Results suggest great changes in freeze–thaw process patterns.
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Short summary
This study reports that ERA5-Land (ERA5L) soil temperature bias in permafrost regions correlates with the bias in air temperature and with maximum snow height. While global reanalyses are important drivers for permafrost study, ERA5L soil data are not well suited for directly informing permafrost research decision making due to their warm bias in winter. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.
Xiongxin Xiao, Tingjun Zhang, Xinyue Zhong, Xiaodong Li, and Yuxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-300, https://doi.org/10.5194/tc-2019-300, 2019
Manuscript not accepted for further review
Short summary
Short summary
Seasonal snow cover is an important component of the climate system and global water cycle that stores large amounts of freshwater. Our research attempts to develop a long-term Northern Hemisphere daily snow depth and snow water equivalent product data using a new algorithm applying in historical passive microwave dataset from 1992 to 2016. Our further analysis showed that snow cover has a significant declining trend across the Northern Hemisphere, especially beginning in the new century.
Bin Cao, Xiaojing Quan, Nicholas Brown, Emilie Stewart-Jones, and Stephan Gruber
Geosci. Model Dev., 12, 4661–4679, https://doi.org/10.5194/gmd-12-4661-2019, https://doi.org/10.5194/gmd-12-4661-2019, 2019
Short summary
Short summary
GlobSim is a tool for simulating land-surface processes and phenomena at point locations globally, even where no site-specific meteorological observations exist. This is important because simulation can add insight to the analysis of observations or help in anticipating climate-change impacts and because site-specific simulation can help in model evaluation.
Xiongxin Xiao, Tingjun Zhang, Xinyue Zhong, Xiaodong Li, and Yuxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-33, https://doi.org/10.5194/tc-2019-33, 2019
Revised manuscript not accepted
Short summary
Short summary
Seasonal snow cover is an important component of the climate system and global water cycle that stores large amounts of freshwater. Our research attempts to develop a long-term Northern Hemisphere daily snow depth and snow water equivalent products using a new algorithm applying in historical passive microwave data sets from 1992 to 2016. Our further analysis showed the snow cover has a significant declining trend across the Northern Hemisphere, especially beginning at the new century.
Dongsheng Su, Xiuqing Hu, Lijuan Wen, Shihua Lyu, Xiaoqing Gao, Lin Zhao, Zhaoguo Li, Juan Du, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, https://doi.org/10.5194/hess-23-2093-2019, 2019
Short summary
Short summary
In this study, freshwater lake model simulation results, verified by satellite and buoy observation data, were used to quantify recent climate change effects on the thermal regime of the largest lake in China. Results indicate that the FLake model can reproduce the lake thermal pattern nicely. The lake surface is warming, while the lake bottom has no significant trend. Climate change also caused an earlier ice-off and later ice-on, leading to an obvious change in the energy balance of the lake.
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018, https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
Short summary
Ground thermal and moisture data are important indicators of the rapid permafrost changes in the Arctic. To better understand the changes, we need a comprehensive dataset across various sites. We synthesize permafrost-related data in the state of Alaska. It should be a valuable permafrost dataset that is worth maintaining in the future. On a wider level, it also provides a prototype of basic data collection and management for permafrost regions in general.
Shuhua Yi, Yujie He, Xinlei Guo, Jianjun Chen, Qingbai Wu, Yu Qin, and Yongjian Ding
The Cryosphere, 12, 3067–3083, https://doi.org/10.5194/tc-12-3067-2018, https://doi.org/10.5194/tc-12-3067-2018, 2018
Short summary
Short summary
Coarse-fragment soil on the Qinghai–Tibetan Plateau has different thermal and hydrological properties to soils commonly used in modeling studies. We took soil samples and measured their physical properties in a laboratory, which were used in a model to simulate their effects on permafrost dynamics. Model errors were reduced using the measured properties, in which porosity played an dominant role.
Hanbo Yun, Qingbai Wu, Qianlai Zhuang, Anping Chen, Tong Yu, Zhou Lyu, Yuzhong Yang, Huijun Jin, Guojun Liu, Yang Qu, and Licheng Liu
The Cryosphere, 12, 2803–2819, https://doi.org/10.5194/tc-12-2803-2018, https://doi.org/10.5194/tc-12-2803-2018, 2018
Short summary
Short summary
Here we reported the QTP permafrost region was a CH4 sink of −0.86 ± 0.23 g CH4-C m−2 yr−1 over 2012–2016, soil temperature and soil water content were dominant factors controlling CH4 fluxes, and their correlations changed with soil depth due to cryoturbation dynamics. This region was a net CH4 sink in autumn, but a net source in spring, despite both seasons experiencing similar top soil thawing and freezing dynamics.
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere, 12, 657–673, https://doi.org/10.5194/tc-12-657-2018, https://doi.org/10.5194/tc-12-657-2018, 2018
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and applied it in order to simulate the long-term change of frozen ground and its effect on hydrology in the upper Heihe basin. Results showed that the permafrost area shrank by 8.8%, and the frozen depth of seasonally frozen ground decreased. Runoff in cold seasons and annual liquid soil moisture increased due to frozen soils change. Groundwater recharge was enhanced due to the degradation of permafrost.
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018, https://doi.org/10.5194/tc-12-227-2018, 2018
Defu Zou, Lin Zhao, Yu Sheng, Ji Chen, Guojie Hu, Tonghua Wu, Jichun Wu, Changwei Xie, Xiaodong Wu, Qiangqiang Pang, Wu Wang, Erji Du, Wangping Li, Guangyue Liu, Jing Li, Yanhui Qin, Yongping Qiao, Zhiwei Wang, Jianzong Shi, and Guodong Cheng
The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, https://doi.org/10.5194/tc-11-2527-2017, 2017
Short summary
Short summary
The area and distribution of permafrost on the Tibetan Plateau are unclear and controversial. This paper generated a benchmark map based on the modified remote sensing products and validated it using ground-based data sets. Compared with two existing maps, the new map performed better and showed that permafrost covered areas of 1.06 × 106 km2. The results provide more detailed information on the permafrost distribution and basic data for use in future research on the Tibetan Plateau permafrost.
Tanguang Gao, Jie Liu, Tingjun Zhang, Yuantao Hu, Jianguo Shang, Shufa Wang, Xiongxin Xiao, Chuankun Liu, Shichang Kang, Mika Sillanpää, and Yulan Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-176, https://doi.org/10.5194/tc-2017-176, 2017
Preprint retracted
Short summary
Short summary
Understanding the interactions between groundwater and surface water in permafrost regions is essential to the understanding of flood frequencies and river water quality of high latitude/altitude basins. Thus, we analyzed the interaction between surface water and groundwater in a permafrost region in the northern Tibetan Plateau by using heat tracing methods.
Bin Cao, Stephan Gruber, and Tingjun Zhang
Geosci. Model Dev., 10, 2905–2923, https://doi.org/10.5194/gmd-10-2905-2017, https://doi.org/10.5194/gmd-10-2905-2017, 2017
Short summary
Short summary
To derive the air temperature in mountain enviroments, we propose a new downscaling method with a spatially variable magnitude of surface effects. Our findings suggest that the difference between near-surface air temperature and upper-air temerpature is a good proxy of surface effects. It can be used to improve downscaling results, especially in valleys with strong surface effects and cold air pooling during winter.
Xiaoqing Peng, Tingjun Zhang, Oliver W. Frauenfeld, Kang Wang, Bin Cao, Xinyue Zhong, Hang Su, and Cuicui Mu
The Cryosphere, 11, 1059–1073, https://doi.org/10.5194/tc-11-1059-2017, https://doi.org/10.5194/tc-11-1059-2017, 2017
Short summary
Short summary
Previous research has paid significant attention to permafrost, e.g. active layer thickness, soil temperature, area extent, and associated degradation leading to other changes. However, less focus has been given to seasonally frozen ground and vast area extent. We combined data from more than 800 observation stations, as well as gridded data, to investigate soil freeze depth across China. The results indicate that soil freeze depth decreases with climate warming.
Xiaowen Wang, Lin Liu, Lin Zhao, Tonghua Wu, Zhongqin Li, and Guoxiang Liu
The Cryosphere, 11, 997–1014, https://doi.org/10.5194/tc-11-997-2017, https://doi.org/10.5194/tc-11-997-2017, 2017
Short summary
Short summary
Rock glaciers are abundant in high mountains in western China but have been ignored for 20 years. We used a new remote-sensing-based method to map active rock glaciers in the Chinese part of the Tien Shan and compiled an inventory of 261 active rock glaciers and included quantitative information about their locations, geomorphic parameters, and downslope velocities. Our dataset suggests that the lower limit of permafrost there is 2500–2800 m.
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-289, https://doi.org/10.5194/tc-2016-289, 2017
Revised manuscript not accepted
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and used it to simulate the long-term change of frozen ground and hydrological impacts in the upper Heihe basin. Results showed that the permafrost area shrank by 9.5 %, and frozen depth of seasonally frozen ground decreased at a rate of 4.1 cm/10 yr. Runoff increased in cold season due to the increase in liquid soil moisture. Groundwater recharge was enhanced due to the degradation of permafrost.
Stephan Gruber, Renate Fleiner, Emilie Guegan, Prajjwal Panday, Marc-Olivier Schmid, Dorothea Stumm, Philippus Wester, Yinsheng Zhang, and Lin Zhao
The Cryosphere, 11, 81–99, https://doi.org/10.5194/tc-11-81-2017, https://doi.org/10.5194/tc-11-81-2017, 2017
Short summary
Short summary
We review what can be inferred about permafrost in the mountains of the Hindu Kush Himalaya region. This is important because the area of permafrost exceeds that of glaciers in this region. Climate change will produce diverse permafrost-related impacts on vegetation, water quality, geohazards, and livelihoods. To mitigate this, a better understanding of high-elevation permafrost in subtropical latitudes as well as the pathways connecting environmental change and human livelihoods, is needed.
Qingbai Wu, Zhongqiong Zhang, Siru Gao, and Wei Ma
The Cryosphere, 10, 1695–1706, https://doi.org/10.5194/tc-10-1695-2016, https://doi.org/10.5194/tc-10-1695-2016, 2016
Ji Chen, Yu Sheng, Qingbai Wu, Lin Zhao, Jing Li, and Jingyi Zhao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-134, https://doi.org/10.5194/tc-2016-134, 2016
Revised manuscript not accepted
Short summary
Short summary
The extreme thin and short-time snow cover in the northeastern Qinghai-Tibet plateau is predominantly during spring and autumn. Removal of seasonal snow cover is beneficial for cooling the active layer in the first few years. Seasonal snow cover maintains the high water content of the active layer because of the inhibitory action of snow cover on the evaporation capacity in the natural site during the daytime and in summer. Snow removal can therefore lead to a rapid decrease of soil moisture.
Shengyun Chen, Wenjie Liu, Qian Zhao, Lin Zhao, Qingbai Wu, Xingjie Lu, Shichang Kang, Xiang Qin, Shilong Chen, Jiawen Ren, and Dahe Qin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-80, https://doi.org/10.5194/tc-2016-80, 2016
Revised manuscript not accepted
Short summary
Short summary
Experimental warming was manipulated using open top chambers in alpine grassland ecosystem in the permafrost regions of the Qinghai-Tibet Plateau. The results revealed variations of earlier thawing, later freezing and longer freezing-thawing periods in shallow soil. Further, the estimated permafrost table declined under the warming scenarios. The work will be helpful to evaluate the stability of Qinghai-Tibet Railway/Highway and estimate the release of carbon under the future climate warming.
Cuicui Mu, Tingjun Zhang, Xiankai Zhang, Hong Guo, Bin Cao, Lili Li, Hang Su, and Xiaoqing Peng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-65, https://doi.org/10.5194/tc-2016-65, 2016
Revised manuscript not accepted
Short summary
Short summary
Permafrost stores massive amounts of carbon. Our results showed that deep soil carbon contents were highest over wet grasslands, and lowest over dry grasslands for different depths. The soils have higher proportions fine particles in wet grasslands, while have higher proportions of coarse fractions such as sand and gravels. Our results also demonstrated that organic carbon pools accompanied with fine-fractions soils under wet grasslands are more decomposable than those of coarse soils.
K. Wang, T. Zhang, and X. Zhong
The Cryosphere, 9, 1321–1331, https://doi.org/10.5194/tc-9-1321-2015, https://doi.org/10.5194/tc-9-1321-2015, 2015
C. Mu, T. Zhang, Q. Wu, X. Peng, B. Cao, X. Zhang, B. Cao, and G. Cheng
The Cryosphere, 9, 479–486, https://doi.org/10.5194/tc-9-479-2015, https://doi.org/10.5194/tc-9-479-2015, 2015
L. Liu, K. Schaefer, A. Gusmeroli, G. Grosse, B. M. Jones, T. Zhang, A. D. Parsekian, and H. A. Zebker
The Cryosphere, 8, 815–826, https://doi.org/10.5194/tc-8-815-2014, https://doi.org/10.5194/tc-8-815-2014, 2014
X. Zhong, T. Zhang, and K. Wang
The Cryosphere, 8, 785–799, https://doi.org/10.5194/tc-8-785-2014, https://doi.org/10.5194/tc-8-785-2014, 2014
S. Yi, J. Chen, Q. Wu, and Y. Ding
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-4703-2013, https://doi.org/10.5194/tcd-7-4703-2013, 2013
Revised manuscript not accepted
Cited articles
Azócar, G. F., Brenning, A., and Bodin, X.: Permafrost distribution
modelling in the semi-arid Chilean Andes, The Cryosphere, 11, 877–890,
https://doi.org/10.5194/tc-11-877-2017, 2017. a
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost
distribution in the European Alps: calculation and evaluation of an index map
and summary statistics, The Cryosphere, 6, 807–820,
https://doi.org/10.5194/tc-6-807-2012, 2012. a
Cao, B., Gruber, S., and Zhang, T.: REDCAPP (v1.0): parameterizing valley
inversions in air temperature data downscaled from reanalyses, Geosci. Model
Dev., 10, 2905–2923, https://doi.org/10.5194/gmd-10-2905-2017, 2017a. a, b
Cao, B., Gruber, S., Zhang, T., Li, L., Peng, X., Wang, K., Zheng, L., Shao,
W., and Guo, H.: Spatial variability of active layer thickness detected by
ground-penetrating radar in the Qilian Mountains, Western China, J.
Geophys. Res.-Earth, 122, 574–591,
https://doi.org/10.1002/2016JF004018, 2017b. a, b
Cao, B., Zhang, T., Peng, X., Mu, C., Wang, Q., Zheng, L., Wang, K., and
Zhong, X.: Thermal Characteristics and Recent Changes of Permafrost in the
Upper Reaches of the Heihe River Basin, Western China, J. Geophys.
Res.-Atmos., 123, 7935–7949, https://doi.org/10.1029/2018JD028442, 2018. a
Chen, Y., Yang, K., He, J., Qin, J., Shi, J., Du, J., and He, Q.: Improving
land surface temperature modeling for dry land of China, J.
Geophys. Res.-Atmos., 116, D20104, https://doi.org/10.1029/2011JD015921,
2011. a
Cheng, G. and Jin, H.: Permafrost and groundwater on the Qinghai-Tibet
Plateau
and in northeast China, Hydrogeol. J., 21, 5–23,
https://doi.org/10.1007/s10040-012-0927-2, 2013. a
Cremonese, E., Gruber, S., Phillips, M., Pogliotti, P., Boeckli, L., Noetzli,
J., Suter, C., Bodin, X., Crepaz, A., Kellerer-Pirklbauer, A., Lang, K.,
Letey, S., Mair, V., Morra di Cella, U., Ravanel, L., Scapozza, C., Seppi,
R., and Zischg, A.: Brief Communication: “An inventory of permafrost
evidence for the European Alps”, The Cryosphere, 5, 651–657,
https://doi.org/10.5194/tc-5-651-2011, 2011. a
Gruber, S., Fleiner, R., Guegan, E., Panday, P., Schmid, M.-O., Stumm, D.,
Wester, P., Zhang, Y., and Zhao, L.: Review article: Inferring permafrost and
permafrost thaw in the mountains of the Hindu Kush Himalaya region, The
Cryosphere, 11, 81–99, https://doi.org/10.5194/tc-11-81-2017, 2017. a
Landis, J. R. and Koch, G. G.: The Measurement of Observer Agreement for
Categorical Data, Biometrics, 33, 159–174, 1977. a
Lin, Z., Burn, C. R., Niu, F., Luo, J., Liu, M., and Yin, G.: The Thermal
Regime, including a Reversed Thermal Offset, of Arid Permafrost Sites with
Variations in Vegetation Cover Density, Wudaoliang Basin, Qinghai-Tibet
Plateau, Permafrost Periglac., 26, 142–159,
https://doi.org/10.1002/ppp.1840, 2015. a, b
Liu, S., Yao, X., Guo, W., Xu, J., Shangguan, D., Wei, J., Bao, W., and Wu,
L.: The contemporary glaciers in China based on the Second Chinese Glacier
Inventory, Acta Geographica Sinica, 70,
3–16, 2015 (in Chinese with English abstract). a
Moorman, B. J., Robinson, S. D., and Burgess, M. M.: Imaging periglacial
conditions with ground-penetrating radar, Permafrost Periglac., 14, 319–329, https://doi.org/10.1002/ppp.463, 2003. a
Mu, C., Zhang, T., Zhao, Q., Su, H., Wang, S., Cao, B., Peng, X., Wu, Q., and
Wu, X.: Permafrost affects carbon exchange and its response to experimental
warming on the northern Qinghai-Tibetan Plateau, Agr. Forest
Meteorol., 247, 252–259,
https://doi.org/10.1016/j.agrformet.2017.08.009, 2017. a
Nan, Z., Huang, P., and Zhao, L.: Permafrost distribution modeling and depth
estimation in the Western Qinghai-Tibet Plateau, Acta Geographica Sinica, 68, 318, https://doi.org/10.11821/xb201303003,
2013 (in Chinese with English
abstract). a
Norman, J., Kustas, W., and Humes, K.: Source approach for estimating soil
and
vegetation energy fluxes in observations of directional radiometric surface
temperature, Agr. Forest Meteorol., 77, 263–293, 1995. a
Prince, S., Goetz, S., Dubayah, R., Czajkowski, K., and Thawley, M.:
Inference
of surface and air temperature, atmospheric precipitable water and vapor
pressure deficit using Advanced Very High-Resolution Radiometer satellite
observations: comparison with field observations, J. Hydrol.,
212–213, 230–249, https://doi.org/10.1016/S0022-1694(98)00210-8, 1998. a
Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., and Jin, R.:
Distribution of Permafrost in China: An Overview of Existing Permafrost Maps,
Permafrost Periglac., 23, 322–333, https://doi.org/10.1002/ppp.1756,
2012. a, b, c, d
Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., and
Wester, P.: Assessment of permafrost distribution maps in the Hindu Kush
Himalayan region using rock glaciers mapped in Google Earth, The Cryosphere,
9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, 2015. a
Wang, W., Huang, X., Deng, J., Xie, H., and Liang, T.: Spatio-Temporal Change
of Snow Cover and Its Response to Climate over the Tibetan Plateau Based on
an Improved Daily Cloud-Free Snow Cover Product, Remote Sensing, 7, 169–194,
https://doi.org/10.3390/rs70100169, 2015. a, b
Wu, J., Sheng, Y., Wu, Q., and Wen, Z.: Processes and modes of permafrost
degradation on the Qinghai-Tibet Plateau, Sci. China Ser. D, 53, 150–158, https://doi.org/10.1007/s11430-009-0198-5, 2010. a
Wu, Q. and Zhang, T.: Recent permafrost warming on the Qinghai-Tibetan
Plateau,
J. Geophys. Res.-Atmos., 113, d13108,
https://doi.org/10.1029/2007JD009539, 2008. a
Wu, Q., Zhu, Y., and Liu, Y.: Application of the Permafrost Table
Temperature
and Thermal Offset Forecast Model in the Tibetan Plateau, Journal of Glaciology and Geocryology, 24, 614–617,
2002 (in Chinese with
English abstract). a
Wu, Q., Zhang, Z., Gao, S., and Ma, W.: Thermal impacts of engineering
activities and vegetation layer on permafrost in different alpine ecosystems
of the Qinghai–Tibet Plateau, China, The Cryosphere, 10, 1695–1706,
https://doi.org/10.5194/tc-10-1695-2016, 2016.
a
Wu, X., Nan, Z., Zhao, S., Zhao, L., and Cheng, G.: Spatial modeling of
permafrost distribution and properties on the Qinghai – Tibet Plateau,
Permafrost Periglac., 29, 86–99, https://doi.org/10.1002/ppp.1971,
2018. a, b, c
Yang, K., He, J., Tang, W., Qin, J., and Cheng, C. C.: On downward shortwave
and longwave radiations over high altitude regions: Observation and modeling
in the Tibetan Plateau, Agr. Forest Meteorol., 150, 38–46,
https://doi.org/10.1016/j.agrformet.2009.08.004, 2010. a
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime:
An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005. a, b
Zhang, T., Heginbottom, J. A., Barry, R. G., and Brown, J.: Further
statistics
on the distribution of permafrost and ground ice in the Northern Hemisphere,
Polar Geography, 24, 126–131, https://doi.org/10.1080/10889370009377692, 2000. a
Zhang, Y., Li, B., and Zheng, D.: A discussion on the boundary and area of
the
Tibetan Plateau in China, Geogr. Res., 21, 1–8, 2002 (Chinese with English abstract). a
Zhang, Y. L., Li, X., Cheng, G. D., Jin, H. J., Yang, D. W., Flerchinger,
G. N., Chang, X. L., Wang, X., and Liang, J.: Influences of Topographic
Shadows on the Thermal and Hydrological Processes in a Cold Region
Mountainous Watershed in Northwest China, J. Adv. Model.
Earth Sy., 10, 1439–1457, https://doi.org/10.1029/2017MS001264, 2018. a
Zhao, S., Nan, Z., Huang, Y., and Zhao, L.: The Application and Evaluation of
Simple Permafrost Distribution Models on the Qinghai–Tibet Plateau,
Permafrost Periglac., 28, 391–404, https://doi.org/10.1002/ppp.1939,
2017. a
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu,
X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y.,
Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the
Tibetan Plateau, The Cryosphere, 11, 2527–2542,
https://doi.org/10.5194/tc-11-2527-2017, 2017. a, b, c, d
Short summary
Many maps have been produced to estimate permafrost distribution over the Qinghai–Tibet Plateau. However the evaluation and inter-comparisons of them are poorly understood due to limited in situ measurements. We provided an in situ inventory of evidence of permafrost presence or absence, with 1475 sites over the Qinghai–Tibet Plateau. Based on the in situ measurements, our evaluation results showed a wide range of map performance, and the estimated permafrost region and area are extremely large.
Many maps have been produced to estimate permafrost distribution over the Qinghai–Tibet Plateau....