Articles | Volume 13, issue 1
https://doi.org/10.5194/tc-13-351-2019
https://doi.org/10.5194/tc-13-351-2019
Research article
 | 
01 Feb 2019
Research article |  | 01 Feb 2019

Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures

Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby

Data sets

Data of "crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures" C. Qi https://doi.org/10.6084/m9.figshare.7604660.v2

Download
Short summary
Ice deformed in nature develops crystallographic preferred orientations, CPOs, which induce an anisotropy in ice viscosity. Shear experiments of ice revealed a transition in CPO with changing temperature/strain, which is due to the change of dominant CPO-formation mechanism: strain-induced grain boundary migration dominates at higher temperatures and lower strains, while lattice rotation dominates at other conditions. Understanding these mechanisms aids the interpretation of CPOs in natural ice.