Articles | Volume 12, issue 12
https://doi.org/10.5194/tc-12-3759-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-3759-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cold-to-warm flow regime transition in snow avalanches
Anselm Köhler
CORRESPONDING AUTHOR
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
Department of Earth Sciences, Durham University, Durham, UK
Jan-Thomas Fischer
Austrian Research Centre for Forests (BFW), Innsbruck, Austria
Riccardo Scandroglio
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
Mathias Bavay
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
Jim McElwaine
Department of Earth Sciences, Durham University, Durham, UK
Betty Sovilla
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
Related authors
No articles found.
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
The Cryosphere, 18, 5323–5345, https://doi.org/10.5194/tc-18-5323-2024, https://doi.org/10.5194/tc-18-5323-2024, 2024
Short summary
Short summary
This research revisits a classic scientific technique, melting calorimetry, to measure snow liquid water content. This study shows with a novel uncertainty propagation framework that melting calorimetry, traditionally less trusted than freezing calorimetry, can produce accurate results. The study defines optimal experiment parameters and a robust field protocol. Melting calorimetry has the potential to become a valuable tool for validating other liquid water content measuring techniques.
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164, https://doi.org/10.5194/nhess-2024-164, 2024
Preprint under review for NHESS
Short summary
Short summary
This study examines how particles move in snow avalanches. The researchers used AvaNodes, a sensor system that tracks particle movement, in combination with radar data and simulations from the open avalanche framework AvaFrame. By comparing measurements and simulations, particle velocity and avalanche front position were matched with high accuracy. The study illustrates how multiple parameter sets can yield appropriate results and highlights the complexity of avalanche simulation.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-1512, https://doi.org/10.5194/egusphere-2024-1512, 2024
Short summary
Short summary
Recent studies confirm that mountain permafrost is reducing, but there is little information on the role of water. This study looks at ten years of weather data and water flow in 50m-deep rock fractures. We precisely quantify the timing and quantities of this flow with a model. For the first time, we estimate pressures generated by water inside rock fractures. Pressures from snowmelt and rain events threaten slope stability; therefore, monitoring water's presence in permafrost areas is crucial.
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
EGUsphere, https://doi.org/10.5194/egusphere-2023-2892, https://doi.org/10.5194/egusphere-2023-2892, 2024
Preprint archived
Short summary
Short summary
Unlocking the potential of melting calorimetry, traditionally confined to school labs, this paper demonstrates its application in the field for accurate measurement of liquid water content in snow. Dispelling misconceptions about measurement uncertainty, it provide a robust protocol and quantifies associated uncertainties. The findings endorse the broader adoption of melting calorimetry for quantification of snow liquid water content in operational context.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Mathias Bavay, Michael Reisecker, Thomas Egger, and Daniela Korhammer
Geosci. Model Dev., 15, 365–378, https://doi.org/10.5194/gmd-15-365-2022, https://doi.org/10.5194/gmd-15-365-2022, 2022
Short summary
Short summary
Most users struggle with the configuration of numerical models. This can be improved by relying on a GUI, but this requires a significant investment and a specific skill set and does not fit with the daily duties of model developers, leading to major maintenance burdens. Inishell generates a GUI on the fly based on an XML description of the required configuration elements, making maintenance very simple. This concept has been shown to work very well in our context.
Xingyue Li, Betty Sovilla, Chenfanfu Jiang, and Johan Gaume
The Cryosphere, 14, 3381–3398, https://doi.org/10.5194/tc-14-3381-2020, https://doi.org/10.5194/tc-14-3381-2020, 2020
Short summary
Short summary
This numerical study investigates how different types of snow avalanches behave, how key factors affect their dynamics and flow regime transitions, and what are the underpinning rules. According to the unified trends obtained from the simulations, we are able to quantify the complex interplay between bed friction, slope geometry and snow mechanical properties (cohesion and friction) on the maximum velocity, runout distance and deposit height of the avalanches.
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Nander Wever, Francesco Comola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017, https://doi.org/10.5194/hess-21-4053-2017, 2017
Short summary
Short summary
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the
linkage between the snow cover, soil and discharge in the stream network. Simulations of soil moisture and streamflow were performed and compared with observations. It was found that discharge at the catchment outlet during intense rainfall or snowmelt periods correlates positively with the initial soil moisture state, in both measurements and simulations.
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
Christoph Marty, Sebastian Schlögl, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017, https://doi.org/10.5194/tc-11-517-2017, 2017
Short summary
Short summary
We simulate the future snow cover in the Alps with the help of a snow model, which is fed by projected temperature and precipitation changes from a large set of climate models. The results demonstrate that snow below 1000 m is probably a rare guest at the end of the century. Moreover, even above 3000 m the simulations show a drastic decrease in snow depth. However, the results reveal that the projected snow cover reduction can be mitigated by 50 % if we manage to keep global warming below 2°.
Martin Mergili, Jan-Thomas Fischer, Julia Krenn, and Shiva P. Pudasaini
Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, https://doi.org/10.5194/gmd-10-553-2017, 2017
Short summary
Short summary
r.avaflow represents a GIS-based, multi-functional open-source tool for the simulation of debris flows, rock avalanches, snow avalanches, or two-phase (solid and fluid) process chains. It further facilitates parameter studies and validation of the simulation results against observed patterns. r.avaflow shall inform strategies to reduce the risks related to the interaction of mass flow processes with society.
Aurélien Gallice, Mathias Bavay, Tristan Brauchli, Francesco Comola, Michael Lehning, and Hendrik Huwald
Geosci. Model Dev., 9, 4491–4519, https://doi.org/10.5194/gmd-9-4491-2016, https://doi.org/10.5194/gmd-9-4491-2016, 2016
Short summary
Short summary
This paper presents the improvements brought to an existing model for discharge and temperature prediction in Alpine streams. Compared to the original model version, it is now possible to choose between various alternatives to simulate certain parts of the water cycle, such as the technique used to transfer water along the stream network. The paper includes an example of application of the model over an Alpine catchment in Switzerland.
Matthias Rauter, Jan-Thomas Fischer, Wolfgang Fellin, and Andreas Kofler
Nat. Hazards Earth Syst. Sci., 16, 2325–2345, https://doi.org/10.5194/nhess-16-2325-2016, https://doi.org/10.5194/nhess-16-2325-2016, 2016
Short summary
Short summary
Kinetic theory describes granular material under rapid motion. Macroscopic phenomena are determined by statistically describing collisions between particles. Recently, the theory has been extended to slow motion and quasi-static cases. Simplifications allow to apply this theory to snow avalanche simulations, where friction models with similar structure have been developed. Different test cases, comparing simulation and measurement data prove the applicability and highlight the improvements.
Jochen Veitinger, Ross Stuart Purves, and Betty Sovilla
Nat. Hazards Earth Syst. Sci., 16, 2211–2225, https://doi.org/10.5194/nhess-16-2211-2016, https://doi.org/10.5194/nhess-16-2211-2016, 2016
Short summary
Short summary
Avalanche hazard assessment requires a very precise estimation of the potential starting zone, which nowadays still depends, to a large extent, on expert judgement of avalanches. Therefore, a new algorithm for automated identification of potential avalanche release areas was developed. Potential avalanche release areas can be defined for varying snow accumulation scenarios, improving the automated estimation of release areas, in particular for frequent avalanches.
Jochen Veitinger and Betty Sovilla
Nat. Hazards Earth Syst. Sci., 16, 1953–1965, https://doi.org/10.5194/nhess-16-1953-2016, https://doi.org/10.5194/nhess-16-1953-2016, 2016
Short summary
Short summary
One of the major challenges in snow avalanche hazard assessment is the correct estimation of release area size, which is of crucial importance in the evaluation of the potential danger that avalanches pose to roads, railways or infrastructure. In this study we show that snow depth can serve as a useful variable with regard to potential release area definition for varying snow cover scenarios. This may ultimately improve avalanche hazard assessment of transport routes or ski resorts.
W. Steinkogler, B. Sovilla, and M. Lehning
The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015, https://doi.org/10.5194/tc-9-1819-2015, 2015
Short summary
Short summary
Infrared radiation thermography (IRT) was used to assess the surface temperature of avalanches with high spatial resolution. Thermal energy increase due to friction was mainly depending on the elevation drop of the avalanche. Warming due to entrainment was very specific to the individual avalanche and depends on the temperature of the snow along the path and the erosion depth. The warmest temperatures were located in the deposits of the dense core.
J. Schwaab, M. Bavay, E. Davin, F. Hagedorn, F. Hüsler, M. Lehning, M. Schneebeli, E. Thürig, and P. Bebi
Biogeosciences, 12, 467–487, https://doi.org/10.5194/bg-12-467-2015, https://doi.org/10.5194/bg-12-467-2015, 2015
M. Bavay and T. Egger
Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, https://doi.org/10.5194/gmd-7-3135-2014, 2014
Short summary
Short summary
The open-source MeteoIO library has been designed to perform the data preprocessing required by numerical models using large meteorological data sets, with a strong emphasis on simplicity and modularity. It retrieves, filters and resamples the data if necessary as well as provides spatial interpolations and parameterizations. It presents a uniform interface to meteorological data in the models, hides the complexity of the preprocessing and guarantees a robust behaviour in case of data errors.
M. Teich, J.-T. Fischer, T. Feistl, P. Bebi, M. Christen, and A. Grêt-Regamey
Nat. Hazards Earth Syst. Sci., 14, 2233–2248, https://doi.org/10.5194/nhess-14-2233-2014, https://doi.org/10.5194/nhess-14-2233-2014, 2014
J. Veitinger, B. Sovilla, and R. S. Purves
The Cryosphere, 8, 547–569, https://doi.org/10.5194/tc-8-547-2014, https://doi.org/10.5194/tc-8-547-2014, 2014
J.-T. Fischer
Nat. Hazards Earth Syst. Sci., 13, 1655–1667, https://doi.org/10.5194/nhess-13-1655-2013, https://doi.org/10.5194/nhess-13-1655-2013, 2013
Related subject area
Discipline: Snow | Subject: Natural Hazards
Impact of climate change on snow avalanche activity in the Swiss Alps
Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Snow mechanical property variability at the slope scale – implication for snow mechanical modelling
Combining modelled snowpack stability with machine learning to predict avalanche activity
Can Saharan dust deposition impact snowpack stability in the French Alps?
A closed-form model for layered snow slabs
A random forest model to assess snow instability from simulated snow stratigraphy
Using snow depth observations to provide insight into the quality of snowpack simulations for regional-scale avalanche forecasting
Snow Avalanche Frequency Estimation (SAFE): 32 years of monitoring remote avalanche depositional zones in high mountains of Afghanistan
Brief communication: Weak control of snow avalanche deposit volumes by avalanche path morphology
Elevation-dependent trends in extreme snowfall in the French Alps from 1959 to 2019
Dynamic crack propagation in weak snowpack layers: insights from high-resolution, high-speed photography
Avalanche danger level characteristics from field observations of snow instability
Using avalanche problems to examine the effect of large-scale atmosphere–ocean oscillations on avalanche hazard in western Canada
On the importance of snowpack stability, the frequency distribution of snowpack stability, and avalanche size in assessing the avalanche danger level
The mechanical origin of snow avalanche dynamics and flow regime transitions
On the relation between avalanche occurrence and avalanche danger level
Validating modeled critical crack length for crack propagation in the snow cover model SNOWPACK
Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024, https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Short summary
For many safety-related applications such as road management, well-documented avalanches are important. To enlarge the information, webcams may be used. We propose supporting the mapping of avalanches from webcams with a machine learning model that interactively works together with the human. Relying on that model, there is a 90% saving of time compared to the "traditional" mapping. This gives a better base for safety-critical decisions and planning in avalanche-prone mountain regions.
Francis Meloche, Francis Gauthier, and Alexandre Langlois
The Cryosphere, 18, 1359–1380, https://doi.org/10.5194/tc-18-1359-2024, https://doi.org/10.5194/tc-18-1359-2024, 2024
Short summary
Short summary
Snow avalanches are a dangerous natural hazard. Backcountry recreationists and avalanche practitioners try to predict avalanche hazard based on the stability of snow cover. However, snow cover is variable in space, and snow stability observations can vary within several meters. We measure the snow stability several times on a small slope to create high-resolution maps of snow cover stability. These results help us to understand the snow variation for scientists and practitioners.
Léo Viallon-Galinier, Pascal Hagenmuller, and Nicolas Eckert
The Cryosphere, 17, 2245–2260, https://doi.org/10.5194/tc-17-2245-2023, https://doi.org/10.5194/tc-17-2245-2023, 2023
Short summary
Short summary
Avalanches are a significant issue in mountain areas where they threaten recreationists and human infrastructure. Assessments of avalanche hazards and the related risks are therefore an important challenge for local authorities. Meteorological and snow cover simulations are thus important to support operational forecasting. In this study we combine it with mechanical analysis of snow profiles and find that observed avalanche data improve avalanche activity prediction through statistical methods.
Oscar Dick, Léo Viallon-Galinier, François Tuzet, Pascal Hagenmuller, Mathieu Fructus, Benjamin Reuter, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 17, 1755–1773, https://doi.org/10.5194/tc-17-1755-2023, https://doi.org/10.5194/tc-17-1755-2023, 2023
Short summary
Short summary
Saharan dust deposition can drastically change the snow color, turning mountain landscapes into sepia scenes. Dust increases the absorption of solar energy by the snow cover and thus modifies the snow evolution and potentially the avalanche risk. Here we show that dust can lead to increased or decreased snowpack stability depending on the snow and meteorological conditions after the deposition event. We also show that wet-snow avalanches happen earlier in the season due to the presence of dust.
Philipp Weißgraeber and Philipp L. Rosendahl
The Cryosphere, 17, 1475–1496, https://doi.org/10.5194/tc-17-1475-2023, https://doi.org/10.5194/tc-17-1475-2023, 2023
Short summary
Short summary
The work presents a mathematical model that calculates the behavior of layered snow covers in response to loadings. The information is necessary to predict the formation of snow slab avalanches. While sophisticated computer simulations may achieve the same goal, they can require weeks to run. By using mathematical simplifications commonly used by structural engineers, the present model can provide hazard assessments in milliseconds, even for snowpacks with many layers of different types of snow.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Simon Horton and Pascal Haegeli
The Cryosphere, 16, 3393–3411, https://doi.org/10.5194/tc-16-3393-2022, https://doi.org/10.5194/tc-16-3393-2022, 2022
Short summary
Short summary
Snowpack models can help avalanche forecasters but are difficult to verify. We present a method for evaluating the accuracy of simulated snow profiles using readily available observations of snow depth. This method could be easily applied to understand the representativeness of available observations, the agreement between modelled and observed snow depths, and the implications for interpreting avalanche conditions.
Arnaud Caiserman, Roy C. Sidle, and Deo Raj Gurung
The Cryosphere, 16, 3295–3312, https://doi.org/10.5194/tc-16-3295-2022, https://doi.org/10.5194/tc-16-3295-2022, 2022
Short summary
Short summary
Snow avalanches cause considerable material and human damage in all mountain regions of the world. We present the first model to automatically inventory avalanche deposits at the scale of a catchment area – here the Amu Panj in Afghanistan – every year since 1990. This model called Snow Avalanche Frequency Estimation (SAFE) is available online on the Google Engine. SAFE has been designed to be simple and universal to use. Nearly 810 000 avalanches were detected over the 32 years studied.
Hippolyte Kern, Nicolas Eckert, Vincent Jomelli, Delphine Grancher, Michael Deschatres, and Gilles Arnaud-Fassetta
The Cryosphere, 15, 4845–4852, https://doi.org/10.5194/tc-15-4845-2021, https://doi.org/10.5194/tc-15-4845-2021, 2021
Short summary
Short summary
Snow avalanches are a major component of the mountain cryosphere that often put people, settlements, and infrastructures at risk. This study investigated avalanche path morphological factors controlling snow deposit volumes, a critical aspect of snow avalanche dynamics that remains poorly known. Different statistical techniques show a slight but significant link between deposit volumes and avalanche path morphology.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, https://doi.org/10.5194/tc-15-4335-2021, 2021
Short summary
Short summary
Extreme snowfall can cause major natural hazards (avalanches, winter storms) that can generate casualties and economic damage. In the French Alps, we show that between 1959 and 2019 extreme snowfall mainly decreased below 2000 m of elevation and increased above 2000 m. At 2500 m, we find a contrasting pattern: extreme snowfall decreased in the north, while it increased in the south. This pattern might be related to increasing trends in extreme snowfall observed near the Mediterranean Sea.
Bastian Bergfeld, Alec van Herwijnen, Benjamin Reuter, Grégoire Bobillier, Jürg Dual, and Jürg Schweizer
The Cryosphere, 15, 3539–3553, https://doi.org/10.5194/tc-15-3539-2021, https://doi.org/10.5194/tc-15-3539-2021, 2021
Short summary
Short summary
The modern picture of the snow slab avalanche release process involves a
dynamic crack propagation phasein which a whole slope becomes detached. The present work contains the first field methodology which provides the temporal and spatial resolution necessary to study this phase. We demonstrate the versatile capabilities and accuracy of our method by revealing intricate dynamics and present how to determine relevant characteristics of crack propagation such as crack speed.
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021, https://doi.org/10.5194/tc-15-3293-2021, 2021
Short summary
Short summary
Snow avalanches threaten people and infrastructure in snow-covered mountain regions. To mitigate the effects of avalanches, warnings are issued by public forecasting services. Presently, the five danger levels are described in qualitative terms. We aim to characterize the avalanche danger levels based on expert field observations of snow instability. Our findings contribute to an evidence-based description of danger levels and to improve consistency and accuracy of avalanche forecasts.
Pascal Haegeli, Bret Shandro, and Patrick Mair
The Cryosphere, 15, 1567–1586, https://doi.org/10.5194/tc-15-1567-2021, https://doi.org/10.5194/tc-15-1567-2021, 2021
Short summary
Short summary
Numerous large-scale atmosphere–ocean oscillations including the El Niño–Southern Oscillation, the Pacific Decadal Oscillation, the Pacific North American Teleconnection Pattern, and the Arctic Oscillation are known to substantially affect winter weather patterns in western Canada. Using avalanche problem information from public avalanche bulletins, this study presents a new approach for examining the effect of these atmospheric oscillations on the nature of avalanche hazard in western Canada.
Frank Techel, Karsten Müller, and Jürg Schweizer
The Cryosphere, 14, 3503–3521, https://doi.org/10.5194/tc-14-3503-2020, https://doi.org/10.5194/tc-14-3503-2020, 2020
Short summary
Short summary
Exploring a large data set of snow stability tests and avalanche observations, we quantitatively describe the three key elements that characterize avalanche danger: snowpack stability, the frequency distribution of snowpack stability, and avalanche size. The findings will aid in refining the definitions of the avalanche danger scale and in fostering its consistent usage.
Xingyue Li, Betty Sovilla, Chenfanfu Jiang, and Johan Gaume
The Cryosphere, 14, 3381–3398, https://doi.org/10.5194/tc-14-3381-2020, https://doi.org/10.5194/tc-14-3381-2020, 2020
Short summary
Short summary
This numerical study investigates how different types of snow avalanches behave, how key factors affect their dynamics and flow regime transitions, and what are the underpinning rules. According to the unified trends obtained from the simulations, we are able to quantify the complex interplay between bed friction, slope geometry and snow mechanical properties (cohesion and friction) on the maximum velocity, runout distance and deposit height of the avalanches.
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020, https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary
Short summary
Snow avalanches represent a major natural hazard in seasonally snow-covered mountain regions around the world. To avoid periods and locations of high hazard, avalanche warnings are issued by public authorities. In these bulletins, the hazard is characterized by a danger level. Since the danger levels are not well defined, we analyzed a large data set of avalanches to improve the description. Our findings show discrepancies in present usage of the danger scale and show ways to improve the scale.
Bettina Richter, Jürg Schweizer, Mathias W. Rotach, and Alec van Herwijnen
The Cryosphere, 13, 3353–3366, https://doi.org/10.5194/tc-13-3353-2019, https://doi.org/10.5194/tc-13-3353-2019, 2019
Short summary
Short summary
Information on snow stability is important for avalanche forecasting. To improve the stability estimation in the snow cover model SNOWPACK, we suggested an improved parameterization for the critical crack length. We compared 3 years of field data to SNOWPACK simulations. The match between observed and modeled critical crack lengths greatly improved, and critical weak layers appear more prominently in the modeled vertical profile of critical crack length.
Yves Bühler, Elisabeth D. Hafner, Benjamin Zweifel, Mathias Zesiger, and Holger Heisig
The Cryosphere, 13, 3225–3238, https://doi.org/10.5194/tc-13-3225-2019, https://doi.org/10.5194/tc-13-3225-2019, 2019
Short summary
Short summary
We manually map 18 737 avalanche outlines based on SPOT6 optical satellite imagery acquired in January 2018. This is the most complete and accurate avalanche documentation of a large avalanche period covering a big part of the Swiss Alps. This unique dataset can be applied for the validation of other remote-sensing-based avalanche-mapping procedures and for updating avalanche databases to improve hazard maps.
Cited articles
Ash, M., Brennan, P. V., Chetty, K., McElwaine, J. N., and Keylock, C. J.:
FMCW Radar Imaging of Avalanche-like Snow Movements, in: Proceedings of the
2010 IEEE Radar Conference, Arlington, Va., 10–14 May 2010, IEEE, 102–107,
https://doi.org/10.1109/RADAR.2010.5494643, 2010. a
Ash, M., Brennan, P. V., Keylock, C. J., Vriend, N. M., McElwaine, J. N., and
Sovilla, B.: Two-Dimensional Radar Imaging of Flowing Avalanches, Cold Reg.
Sci. Technol., 102, 41–51, https://doi.org/10.1016/j.coldregions.2014.02.004, 2014. a
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for
meteorological data, Geosci. Model Dev., 7, 3135–3151,
https://doi.org/10.5194/gmd-7-3135-2014, 2014. a
Dash, J. G., Rempel, A. W., and Wettlaufer, J. S.: The physics of premelted
ice and its geophysical consequences, Rev. Mod. Phys., 78, 695–741,
https://doi.org/10.1103/RevModPhys.78.695, 2006. a
Dufour, F., Gruber, U., Bartelt, P., and Ammann, W.: Overview of the 1999
measurements at the SLF test site Vallée de la Sionne, in: International
Snow Science Workshop, Big Sky, Montana, USA, 2–6 October 2000, 527–534,
2000. a
Fischer, J.-T., Fromm, R., Gauer, P., and Sovilla, B.: Evaluation of
probabilistic snow avalanche simulation ensembles with Doppler radar
observations, Cold Reg. Sci. Technol., 97, 151–158,
https://doi.org/10.1016/j.coldregions.2013.09.011, 2014. a
Gauer, P. and Issler, D.: Possible erosion mechanisms in snow avalanches,
Ann. Glaciol., 38, 384–392, https://doi.org/10.3189/172756404781815068, 2004. a
Gauer, P. and Kristensen, K.: Four decades of observations from NGI's
full-scale avalanche test site Ryggfonn – Summary of experimental results,
Cold Reg. Sci. Technol., 125, 162–176,
https://doi.org/10.1016/j.coldregions.2016.02.009, 2016. a
Gauer, P., Kern, M., Kristensen, K., Lied, K., Lambert, R., and Schreiber,
H.: On pulsed Doppler radar measurements of avalanches and their implication
to avalanche dynamics, Cold Reg. Sci. Technol., 50, 55–71,
https://doi.org/10.1016/j.coldregions.2007.03.009, 2007. a, b
Gauer, P., Issler, D., Lied, K., Kristensen, K., and Sandersen, F.: On snow
avalanche flow regimes: Inferences from observations and measurements,
International Snow Science Workshop, Whistler, Canada, 21–27 September 2008,
717–723, 2008a. a
Gauer, P., Lied, K., and Kristensen, K.: On avalanche measurements at the
Norwegian full-scale test-site Ryggfonn, Cold Reg. Sci. Technol., 51,
138–155, https://doi.org/10.1016/j.coldregions.2006.09.010, 2008b. a
Huwald, H., Higgins, C. W., Boldi, M.-O., Bou-Zeid, E., Lehning, M., and
Parlange, M. B.: Albedo effect on radiative errors in air temperature
measurements, Water Resour. Res., 45, W08431, https://doi.org/10.1029/2008WR007600,
2009. a
Issler, D.: Experimental Information on the Dynamics of Dry-Snow
Avalanches, in: Dynamic Response of Granular and Porous Materials
under Large and Catastrophic Deformations, edited by: Hutter, K. and
Kirchner, N., Springer, https://doi.org/10.1007/978-3-540-36565-5_4, 109–160, 2003. a, b, c
Jóhannesson, T., Gauer, P., Issler, P., Lied, K.: The design of avalanche
protection dams: recent practical and theoretical developments, in: Climate
Change and Natural Hazard Research, Series 2, EUR 23339, European Commission,
Brussels, 2009. a
Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model
for the Swiss avalanche warning Part III: meteorological forcing, thin layer
formation and evaluation, Cold Reg. Sci. Technol., 35, 169–184,
https://doi.org/10.1016/S0165-232X(02)00072-1, 2002. a
Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M.,
and Zappa, M.: ALPINE3D: a detailed model of mountain surface processes and
its application to snow hydrology, Hydrol. Process., 20, 2111–2128,
https://doi.org/10.1002/hyp.6204, 2006. a
McElwaine*, J. N., Köhler*, A., Sovilla, B., Ash, M., and
Brennan, P. V.: GEODAR data of snow avalanches at Vallée de la Sionne:
Seasons 2010/11, 2011/12, 2012/13 & 2014/15, Data set, Zenodo,
https://doi.org/10.5281/zenodo.1042108, *equally contributing authors, 2017. a, b
Naaim, M., Durand, Y., Eckert, N., and Chambon, G.: Dense avalanche friction
coefficients: influence of physical properties of snow, J. Glaciol., 59,
771–782, https://doi.org/10.3189/2013JoG12J205, 2013. a, b
Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sensitivity of
Alpine3D modeled snow cover to modifications in DEM resolution, station
coverage and meteorological input quantities, Environ. Modell. Softw., 83,
387–396, https://doi.org/10.1016/j.envsoft.2016.02.017, 2016. a
Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Evaluation of modelled
snow depth and snow water equivalent at three contrasting sites in
Switzerland using SNOWPACK simulations driven by different meteorological
data input, Cold Reg. Sci. Technol., 99, 27–37,
https://doi.org/10.1016/j.coldregions.2013.12.004, 2014. a
Schreiber, H., Randeu, W. L., Schaffhauser, H., and Rammer, L.: Avalanche
dynamics measurement by pulsed Doppler radar, Ann. Glaciol., 32, 275–280,
https://doi.org/10.3189/172756401781819021, 2001. a, b
Sovilla, B., Burlando, P., and Bartelt, P.: Field experiments and numerical
modeling of mass entrainment in snow avalanches, J. Geophys. Res., 111,
F03007, https://doi.org/10.1029/2005JF000391, 2006. a, b
Sovilla, B., McElwaine, J., Steinkogler, W., Hiller, M., Dufour, F.,
Suriñach, E., Guillen, C. P., Fischer, J.-T., Thibert, E., and Baroudi,
D.: The full-scale avalanche dynamics test site Vallée de la Sionne,
International Snow Science Workshop, Grenoble, France, 7–11 October 2013,
1350–1357, 2013. a
Sovilla, B., McElwaine, J. N., and Louge, M. Y.: The structure of powder snow
avalanches, C. R. Phys., 16, 97–104, https://doi.org/10.1016/j.crhy.2014.11.005, 2015. a, b
Sovilla, B., Faug, T., Köhler, A., Baroudi, D., Fischer, J.-T., and
Thibert, E.: Gravitational wet avalanche pressure on pylon-like structures,
Cold Reg. Sci. Technol., 126, 66–75,
https://doi.org/10.1016/j.coldregions.2016.03.002, 2016. a, b, c
Sovilla, B., McElwaine, J. N., and Köhler, A.: The intermittency region
of powder snow avalanches, J. Geophys. Res., 123, 2525–2545,
https://doi.org/10.1029/2018JF004678, 2018.
a
Steinkogler, W., Gaume, J., Löwe, H., Sovilla, B., and Lehning, M.:
Granulation of snow: From tumbler experiments to discrete element
simulations, J. Geophys. Res., 120, 1107–1126, https://doi.org/10.1002/2014JF003294,
2015a. a
Steinkogler, W., Sovilla, B., and Lehning, M.: Thermal energy in dry snow
avalanches, The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015,
2015b. a
Turnbull, B.: Scaling Laws for Melting Ice Avalanches, Phys. Rev. Lett., 107,
258001, https://doi.org/10.1103/PhysRevLett.107.258001, 2011. a
Vera Valero, C., Wikstroem Jones, K., Bühler, Y., and Bartelt, P.:
Release temperature, snow-cover entrainment and the thermal flow regime of
snow avalanches, J. Glaciol., 61, 173–184, https://doi.org/10.3189/2015JoG14J117,
2015. a
Vriend, N. M., McElwaine, J. N., Sovilla, B., Keylock, C. J., Ash, M., and
Brennan, P. V.: High-resolution Radar Measurements of Snow Avalanches,
Geophys. Res. Lett., 40, 727–731, https://doi.org/10.1002/grl.50134, 2013. a
Würzer, S., Wever, N., Juras, R., Lehning, M., and Jonas, T.: Modelling
liquid water transport in snow under rain-on-snow conditions – considering
preferential flow, Hydrol. Earth Syst. Sci., 21, 1741–1756,
https://doi.org/10.5194/hess-21-1741-2017, 2017. a
Short summary
Snow avalanches show complicated flow behaviour, characterized by several flow regimes which coexist in one avalanche. In this work, we analyse flow regime transitions where a powder snow avalanche transforms into a plug flow avalanche by incorporating warm snow due to entrainment. Prediction of such a transition is very important for hazard mitigation, as the efficiency of protection dams are strongly dependent on the flow regime, and our results should be incorporated into avalanche models.
Snow avalanches show complicated flow behaviour, characterized by several flow regimes which...