Articles | Volume 12, issue 10
https://doi.org/10.5194/tc-12-3383-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-3383-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet
University of Oregon Department of Earth Sciences, Eugene, Oregon, USA
Leif Karlstrom
University of Oregon Department of Earth Sciences, Eugene, Oregon, USA
Kang Yang
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
Joint Center for Global Change Studies, Beijing 100875, China
Related authors
No articles found.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Mingxuan Wu, Xiaohong Liu, Hongbin Yu, Hailong Wang, Yang Shi, Kang Yang, Anton Darmenov, Chenglai Wu, Zhien Wang, Tao Luo, Yan Feng, and Ziming Ke
Atmos. Chem. Phys., 20, 13835–13855, https://doi.org/10.5194/acp-20-13835-2020, https://doi.org/10.5194/acp-20-13835-2020, 2020
Short summary
Short summary
The spatiotemporal distributions of dust aerosol simulated by global climate models (GCMs) are highly uncertain. In this study, we evaluate dust extinction profiles, optical depth, and surface concentrations simulated in three GCMs and one reanalysis against multiple satellite retrievals and surface observations to gain process-level understanding. Our results highlight the importance of correctly representing dust emission, dry/wet deposition, and size distribution in GCMs.
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020, https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Short summary
This study compares hourly supraglacial moulin discharge simulations from three surface meltwater routing models. Results show that these models are superior to simply using regional climate model runoff without routing, but different routing models, different-spatial-resolution DEMs, and parameterized seasonal evolution of supraglacial stream and river networks induce significant variability in diurnal moulin discharges and corresponding subglacial effective pressures.
Kang Yang, Laurence C. Smith, Leif Karlstrom, Matthew G. Cooper, Marco Tedesco, Dirk van As, Xiao Cheng, Zhuoqi Chen, and Manchun Li
The Cryosphere, 12, 3791–3811, https://doi.org/10.5194/tc-12-3791-2018, https://doi.org/10.5194/tc-12-3791-2018, 2018
Short summary
Short summary
A high-resolution spatially lumped hydrologic surface routing model is proposed to simulate meltwater transport over bare ice surfaces. In an ice-covered catchment, meltwater is routed by slow interfluve flow (~10−3–10−4 m s−1) followed by fast open-channel flow (~10−1 m s−1). Seasonal evolution of supraglacial stream-river networks substantially alters the magnitude and timing of moulin discharge with implications for subglacial hydrology and ice dynamics.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Clément Miège, Lincoln H. Pitcher, Jonathan C. Ryan, Kang Yang, and Sarah W. Cooley
The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, https://doi.org/10.5194/tc-12-955-2018, 2018
Short summary
Short summary
We present measurements of ice density that show the melting bare-ice surface of the Greenland ice sheet study site is porous and saturated with meltwater. The data suggest up to 18 cm of meltwater is temporarily stored within porous, low-density ice. The findings imply meltwater drainage off the ice sheet surface is delayed and that the surface mass balance of the ice sheet during summer cannot be estimated solely from ice surface elevation change measurements.
Related subject area
Discipline: Ice sheets | Subject: Geomorphology
Dynamical response of the southwestern Laurentide Ice Sheet to rapid Bølling–Allerød warming
Effects of topographic and meteorological parameters on the surface area loss of ice aprons in the Mont Blanc massif (European Alps)
Geomorphology and shallow sub-sea-floor structures underneath the Ekström Ice Shelf, Antarctica
Formation of ribbed bedforms below shear margins and lobes of palaeo-ice streams
A quasi-annual record of time-transgressive esker formation: implications for ice-sheet reconstruction and subglacial hydrology
Ice-stream flow switching by up-ice propagation of instabilities along glacial marginal troughs
How dynamic are ice-stream beds?
Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels
Sophie L. Norris, Martin Margold, David J. A. Evans, Nigel Atkinson, and Duane G. Froese
The Cryosphere, 18, 1533–1559, https://doi.org/10.5194/tc-18-1533-2024, https://doi.org/10.5194/tc-18-1533-2024, 2024
Short summary
Short summary
Associated with climate change between the Last Glacial Maximum and the current interglacial period, we reconstruct the behaviour of the southwestern Laurentide Ice Sheet, which covered the Canadian Prairies, using detailed landform mapping. Our reconstruction depicts three shifts in the ice sheet’s dynamics. We suggest these changes resulted from ice sheet thinning triggered by abrupt climatic change. However, we show that regional lithology and topography also play an important role.
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Short summary
Climate change impacts all parts of the cryosphere but most importantly the smaller ice bodies like ice aprons (IAs). This study is the first attempt on a regional scale to assess the impacts of the changing climate on these small but very important ice bodies. Our study shows that IAs have consistently lost mass over the past decades. The effects of climate variables, particularly temperature and precipitation and topographic factors, were analysed on the loss of IA area.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Régis Mourgues, Christopher D. Clark, Paul Bessin, David Peigné, and Nigel Atkinson
The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, https://doi.org/10.5194/tc-15-2889-2021, 2021
Short summary
Short summary
Subglacial bedforms are commonly used to reconstruct past glacial dynamics and investigate processes occuring at the ice–bed interface. Using analogue modelling and geomorphological mapping, we demonstrate that ridges with undulating crests, known as subglacial ribbed bedforms, are ubiquitous features along ice stream corridors. These bedforms provide a tantalizing glimpse into (1) the former positions of ice stream margins, (2) the ice lobe dynamics and (3) the meltwater drainage efficiency.
Stephen J. Livingstone, Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald, and Felix Ng
The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, https://doi.org/10.5194/tc-14-1989-2020, 2020
Short summary
Short summary
We map series of aligned mounds (esker beads) across central Nunavut, Canada. Mounds are interpreted to have formed roughly annually as sediment carried by subglacial rivers is deposited at the ice margin. Chains of mounds are formed as the ice retreats. This high-resolution (annual) record allows us to constrain the pace of ice retreat, sediment fluxes, and the style of drainage through time. In particular, we suggest that eskers in general record a composite signature of ice-marginal drainage.
Etienne Brouard and Patrick Lajeunesse
The Cryosphere, 13, 981–996, https://doi.org/10.5194/tc-13-981-2019, https://doi.org/10.5194/tc-13-981-2019, 2019
Short summary
Short summary
Modifications in ice-stream networks have major impacts on ice sheet mass balance and global sea level. However, the mechanisms controlling ice-stream switching remain poorly understood. We report a flow switch in an ice-stream system that occurred on the Baffin Island shelf through the erosion of a marginal trough. Up-ice propagation of ice streams through marginal troughs can lead to the piracy of neighboring ice catchments, which induces an adjacent ice-stream switch and shutdown.
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018, https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Short summary
This paper investigates the dynamics of ice stream beds using repeat geophysical surveys of the bed of Pine Island Glacier, West Antarctica; 60 km of the bed was surveyed, comprising the most extensive repeat ground-based geophysical surveys of an Antarctic ice stream; 90 % of the surveyed bed shows no significant change despite the glacier increasing in speed by up to 40 % over the last decade. This result suggests that ice stream beds are potentially more stable than previously suggested.
Anna Grau Galofre, A. Mark Jellinek, Gordon R. Osinski, Michael Zanetti, and Antero Kukko
The Cryosphere, 12, 1461–1478, https://doi.org/10.5194/tc-12-1461-2018, https://doi.org/10.5194/tc-12-1461-2018, 2018
Short summary
Short summary
Water accumulated at the base of ice sheets is the main driver of glacier acceleration and loss of ice mass in Arctic regions. Previously glaciated landscapes sculpted by this water carry information about how ice sheets collapse and ultimately disappear. The search for these landscapes took us to the high Arctic, to explore channels that formed under kilometers of ice during the last ice age. In this work we describe how subglacial channels look and how they helped to drain an ice sheet.
Cited articles
Ahlstrøm, A. P., Petersen, D., Langen, P. L., Citterio, M., and Box, J. E.:
Abrupt shift in the observed runoff from the southwestern Greenland ice sheet,
Sci. Adv., 3, 12, https://doi.org/10.1126/sciadv.1701169, 2017. a
Andersen, M. L., Stenseng, L., Skourup, H., Colgan, W., Khan, S. A., Kristensen,
S. S., Andersen, S. B., Box, J. E., Ahlstrøm, A. P., Fettweis, X., and
Forsbergb, R.: Basin-scale partitioning of Greenland ice sheet mass balance
components (2007–2011), Earth Planet. Sc. Lett., 409, 89–95, https://doi.org/10.1016/j.epsl.2014.10.015, 2015. a, b
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P.,
Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving
subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014. a
Banwell, A. F., Arnold, N. S., Willis, I. C., Tedesco, M., and Ahlstrøm, A.
P.: Modeling supraglacial water routing and lake filling on the Greenland Ice
Sheet, J. Geophys. Res.-Earth, 117, F04012, https://doi.org/10.1029/2012JF002393, 2012. a
Banwell, A. F., Hewitt, I., Willis, I., and Arnold, N.: Moulin density controls
drainage development beneath the Greenland ice sheet, J. Geophys. Res.-Earth,
121, 2248–2269, https://doi.org/10.1002/2015JF003801, 2016. a, b, c
Black, B. A., Perron, T. J., Hemingway, D., Bailey, E., Nimmo, F., and Zebker,
H.: Global drainage patterns and the origins of topographic relief on Earth,
Mars, and Titan, Science, 356, 727–731, https://doi.org/10.1126/science.aag0171, 2017. a, b, c
Boisvert, L. N., Lee, J. N., Lenaerts, J. T. M., Noël, B., van den Broeke,
M. R., and Nolin, A. W.: Using remotely sensed data from AIRS to estimate the
vapor flux on the Greenland ice sheet: Comparisons with observations and a
regional climate model, J. Geophys. Res.-Atmos., 122, 202–229,
https://doi.org/10.1002/2016JD025674, 2017. a
Budd, W.: Ice Flow Over Bedrock Perturbations, J. Glaciol., 9, 29–48,
https://doi.org/10.3189/S0022143000026770, 1970. a
Catania, G. A., Neumann, T. A., and Price, S. F.: Characterizing englacial
drainage in the ablation zone of the Greenland ice sheet, J. Glaciol., 54,
567–578, https://doi.org/10.3189/002214308786570854, 2008. a
Chandler, D. M., Wadham, J. L., Lis, G. P., Cowton, T., Sole, A., Bartholomew,
I., Telling, J., Nienow, P., Bagshaw, E. B., Mair, D., Vinen, S., and Hubbard,
A.: Evolution of the subglacial drainage system beneath the Greenland Ice Sheet
revealed by tracers, Nat. Geosci., 6, 195–198, https://doi.org/10.1038/ngeo1737, 2013. a, b, c, d
Chu, V. W.: Greenland ice sheet hydrology: A review, Prog. Phys. Geogr.: Earth
Environ., 38, 19–54, https://doi.org/10.1177/0309133313507075, 2014. a
Cooper, M. G., Smith, L. C., Rennermalm, A. K., Miège, C., Pitcher, L. H.,
Ryan, J. C., Yang, K., and Cooley, S. W.: Meltwater storage in low-density
near-surface bare ice in the Greenland ice sheet ablation zone, The Cryosphere,
12, 955–970, https://doi.org/10.5194/tc-12-955-2018, 2018. a
CReSIS: CReSIS Radar Depth Sounder Data, Digital Media, Lawrence, Kansas, USA,
available at: http://data.cresis.ku.edu/ (last access: 9 January 2018), 2016. a
Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde, D.,
and Bhatia, M. P.: Fracture Propagation to the Base of the Greenland Ice Sheet
During Supraglacial Lake Drainage, Science, 320, 778–781, https://doi.org/10.1126/science.1153360, 2008. a, b, c
De Rydt, J., Gudmundsson, G. H., Corr, H. F. J., and Christoffersen, P.: Surface
undulations of Antarctic ice streams tightly controlled by bedrock topography,
The Cryosphere, 7, 407–417, https://doi.org/10.5194/tc-7-407-2013, 2013. a
Echelmeyer, K., Clarke, T. S., and Harrison, W. D.: Surficial glaciology of
Jakobshavns Isbræ, West Greenland: Part I. Surface morphology, J. Glaciol.,
37, 368–382, https://doi.org/10.3189/S0022143000005803, 1991. a
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014. a
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M.,
van den Broeke, M. R., and Gallée, H.: Estimating the Greenland ice sheet
surface mass balance contribution to future sea level rise using the regional
atmospheric climate model MAR, The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, 2013. a
Fountain, A. G. and Walder, J. S.: Water flow through temperate glaciers, Rev.
Geophys., 36, 299–328, https://doi.org/10.1029/97RG03579, 1998. a
Fowler, A. C.: Restricted access A sliding law for glaciers of constant viscosity
in the presence of subglacial cavitation, Proc. Roy. Soc., 407, 147–170,
https://doi.org/10.1098/rspa.1986.0090, 1986. a
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L.,
de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P.,
Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.:
Capabilities and performance of Elmer/Ice, a new-generation ice sheet model,
Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz,
C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution
to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6,
1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012. a
Graham, F. S., Morlighem, M., Warner, R. C., and Treverrow, A.: Implementing an
empirical scalar constitutive relation for ice with flow-induced polycrystalline
anisotropy in large-scale ice sheet models, The Cryosphere, 12, 1047–1067,
https://doi.org/10.5194/tc-12-1047-2018, 2018. a
Hack, J. T.: Studies of longitudinal stream profiles in Virginia and Maryland,
USGS Professional Papers 294-B, USGS – United States Government Printing Office,
Washington, D.C., 1957. a
Hart, J. K.: Subglacial erosion, deposition and deformation associated with
deformable beds, Prog. Phys. Geogr.: Earth Environ., 19, 173–191, https://doi.org/10.1177/030913339501900202, 1995. a, b
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of
Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559,
https://doi.org/10.5194/tc-8-1539-2014, 2014. a, b, c, d
Hewitt, I. J.: Modelling distributed and channelized subglacial drainage: the
spacing of channels, J. Glaciol., 57, 302–314, https://doi.org/10.3189/002214311796405951, 2011. a, b, c
Hewitt, I. J. and Fowler, A. C.: Seasonal waves on glaciers, Hydrol. Process.,
22, 3919–3930, https://doi.org/10.1002/hyp.7029, 2008. a
Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C., and Rumrill, J.
A.: Links between acceleration, melting, and supraglacial lake drainage of the
western Greenland Ice Sheet, J. Geophys. Res.-Earth, 116, F04035, https://doi.org/10.1029/2010JF001934, 2011. a
Hoffman, M. J., Andrews, L. C., Price, S. F., Catania, G. A., Neumann, T. A.,
Lüthi, M. P., Gulley, J., Ryser, C., Hawley, R. L., and Morriss, B.:
Greenland subglacial drainage evolution regulated by weakly connected regions
of the bed, Nat. Commun., 7, 13903, https://doi.org/10.1038/ncomms13903, 2016. a
Hoffman, M. J., Perego, M., Andrews, L. C., Price, S. F., Neumann, T. A., Johnson,
J. V., Catania, G., and Lüthi, M. P.: Widespread Moulin Formation During
Supraglacial Lake Drainages in Greenland, Geophys. Res. Lett., 45, 778–788,
https://doi.org/10.1002/2017GL075659, 2018. a
Howard, A. D. and Kerby, G.: Channel changes in badlands, Geol. Soc. Am. Bull.,
94, 739–752, 1983. a
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project
(GIMP) land classification and surface elevation data sets, The Cryosphere,
8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014. a, b
Hutter, K., Legerer, F., and Spring, U.: First-Order Stresses and Deformations
in Glaciers and Ice Sheets, J. Glaciol., 27, 227–270, https://doi.org/10.3189/S0022143000015379, 1981. a
Huybrechts, P.: Basal temperature conditions of the Greenland ice sheet during
the glacial cycles, Ann. Glaciol., 23, 226–236, https://doi.org/10.3189/S0260305500013483, 1996. a
Igneczi, A., Sole, A. J., Livingstone, S. J., Ng, F. S. L., and Yang, K.:
Greenland Ice Sheet Surface Topography and Drainage Structure Controlled by
the Transfer of Basal Variability, Front. Earth Sci., 6, 101, https://doi.org/10.3389/feart.2018.00101, 2018. a
Ignéczi, Á. I., Sole, A. J., Livingstone, S. J., Leeson, A. A., Fettweis,
X., Selmes, N., Gourmelen, N., and Briggs, K.: Northeast sector of the Greenland
Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during
the 21st century, Geophys. Res. Lett., 43, 9729–9738, https://doi.org/10.1002/2016GL070338, 2016. a
Joughin, I., Das, S. B., Flowers, G. E., Behn, M. D., Alley, R. B., King, M. A.,
Smith, B. E., Bamber, J. L., van den Broeke, M. R., and van Angelen, J. H.:
Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow
variability, The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, 2013. a, b
Karlstrom, L., Gajjar, P., and Manga, M.: Meander formation in supraglacial
streams, J. Geophys. Res.-Earth, 118, 1897–1907, https://doi.org/10.1002/jgrf.20135, 2013. a
Karlstrom, L., Zok, A., and Manga, M.: Near-surface permeability in a
supraglacial drainage basin on the Llewellyn glacier, Juneau Ice Field, British
Columbia, The Cryosphere, 8, 537–546, https://doi.org/10.5194/tc-8-537-2014, 2014. a
Kavanaugh, J. L. and Clarke, G. K.: Evidence for extreme pressure pulses in the
subglacial water system, J. Glaciol., 46, 206–212, https://doi.org/10.3189/172756500781832963, 2000. a
Khan, S. A., Aschwanden, A., Bjørk, A. A., Wahr, J., Kjeldsen, K. K., and
Kjær, K. H.: Greenland ice sheet mass balance: a review, IOP Reports on
Progress in Physics, IOP Publishing Ltd, Bristol, UK, https://doi.org/10.1088/0034-4885/78/4/046801, 2015. a
Koenig, L. S., Ivanoff, A., Alexander, P. M., MacGregor, J. A., Fettweis, X.,
Panzer, B., Paden, J. D., Forster, R. R., Das, I., McConnell, J. R., Tedesco,
M., Leuschen, C., and Gogineni, P.: Annual Greenland accumulation rates (2009–2012)
from airborne snow radar, The Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016, 2016. a
Lampkin, D. J.: Supraglacial lake spatial structure in western Greenland during
the 2007 ablation season, J. Geophys. Res.-Earth, 116, f04001, https://doi.org/10.1029/2010JF001725, 2011. a
Lampkin, D. J. and van der Berg, J.: A preliminary investigation of the influence
of basal and surface topography on supraglacial lake distribution near Jakobshavn
Isbrae, western Greenland, Hydrol. Process., 25, 3347–3355, https://doi.org/10.1002/hyp.8170, 2011. a
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale,
high order, high spatial resolution, ice sheet modeling using the Ice Sheet
System Model (ISSM), J. Geophys. Res.-Earth, 117, https://doi.org/10.1029/2011JF002140, 2012. a
Leeson, A. A., Shepherd, A., Briggs, K., Howat, I., Fettweis, X., Morlighem, M.,
and Rignot, E.: Supraglacial lakes on the Greenland ice sheet advance inland
under warming climate, Nat. Clim. Change, 5, 51–55, https://doi.org/10.1038/nclimate2463, 2015. a, b
Lipscomb, W. H., Fyke, J. G., Vizcaíno, M., Sacks, W. J., Wolfe, J.,
Vertenstein, M., Craig, A., Kluzek, E., and Lawrence, D. M.: Implementation
and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community
Earth System Model, J. Climate, 26, 7352–7371, https://doi.org/10.1175/JCLI-D-12-00557.1, 2013. a
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Aschwanden, A., Clow, G.
D., Colgan, W. T., Gogineni, S. P., Morlighem, M., Nowicki, S. M. J., Paden,
J. D., Price, S. F., and Seroussi, H.: A synthesis of the basal thermal state
of the Greenland Ice Sheet, J. Geophys. Res.-Earth, 121, 1328–1350,
https://doi.org/10.1002/2015JF003803, 2016. a, b, c
Mackey, B. H. and Roering, J. J.: Sediment yield, spatial characteristics, and
the long-term evolution of active earthflows determined from airborne LiDAR
and historical aerial photographs, Eel River, California, GSA Bulletin, 123,
1560–1576, https://doi.org/10.1130/B30306.1, 2011. a
Meierbachtol, T., Harper, J., and Humphrey, N.: Basal Drainage System Response
to Increasing Surface Melt on the Greenland Ice Sheet, Science, 341, 777–779,
https://doi.org/10.1126/science.1235905, 2013. a
Meyer, C. R. and Hewitt, I. J.: A continuum model for meltwater flow through
compacting snow, The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017, 2017. a
Montgomery, D.: Slope Distributions, Threshold Hillslopes, and Steady-state
Topography, Am. J. Science, 301, 432–454, https://doi.org/10.2475/ajs.301.4-5.432, 2001. a, b, c, d
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry,
D.: A mass conservation approach for mapping glacier ice thickness, Geophys.
Res. Lett., 38, L19503, https://doi.org/10.1029/2011GL048659, 2011. a
Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of basal
friction in Antarctica using exact and incomplete adjoints of a higher-order
model, J. Geophys. Res.-Earth, 118, 1746–1753, https://doi.org/10.1002/jgrf.20125, 2013. a, b
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.: Deeply
incised submarine glacial valleys beneath the Greenland Ice Sheet, Nat. Geosci.,
7, 418–422, https://doi.org/10.1038/ngeo2167, 2014. a, b, c
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.: IceBridge
BedMachine Greenland, Version 2, NASA DAAC at the National Snow and Ice Data
Center, https://doi.org/10.5067/AD7B0HQNSJ29, 2015. a
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L.,
Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan,
K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K.,
Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer,
S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den
Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3:
Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam
Echo Sounding Combined With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017a. a, b, c, d, e, f, g, h, i
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L.,
Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan,
K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K.,
Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer,
S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den
Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: IceBridge
BedMachine Greenland, Version 3, NASA National Snow and Ice Data Center Distributed
Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/2CIX82HUV88Y, 2017b. a, b, c, d, e
Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., and Potin, P.: The Sentinel-1
Mission: New Opportunities for Ice Sheet Observations, Remote Sensing, 7,
9371–9389, https://doi.org/10.3390/rs70709371, 2015. a, b, c
Ng, F. S. L., Igneczi, A., Sole, A. J., and Livingstone, S. J.: Response of
surface topography to basal variability along glacial flowlines, J. Geophys.
Res.-Earth, https://doi.org/10.1029/2017JF004555, in press, 2018. a
Noel, B., van de Berg, W. J., van Meijgaard, E., Munneke, P. K., van de Wal, R.
S. W., and van den Broeke, M. R.: Evaluation of the updated regional climate
model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet, The Cryosphere,
9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, 2015. a, b, c, d
Noh, M.-J. and Howat, I. M.: Automated stereo-photogrammetric DEM generation at
high latitudes: Surface Extraction with TIN-based Search-space Minimization
(SETSM) validation and demonstration over glaciated regions, GIScience Remote
Sens., 52, 198–217, https://doi.org/10.1080/15481603.2015.1008621, 2015. a
Nye, J. F.: The response of glaciers and ice-sheets to seasonal and climatic
changes, Proc. Roy. Soc., 256, 559–584, https://doi.org/10.1098/rspa.1960.0127, 1960. a
OHara, D., Karlstrom, L., and Roering, J. J.: Distributed landscape response to
localized uplift and the fragility of steady states, Elsevier, submitted, 2018. a
Parker, G.: Meandering of supraglacial melt streams, Water Resour. Res.,
11, 551–552, 1975. a
Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Spectral signatures of
characteristic spatial scales and nonfractal structure in landscapes, J. Geophys.
Res., 113, F04003, https://doi.org/10.1029/2007JF000866, 2008. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical Recipes The Art of Scientific Computing, 3rd Edn., Cambridge University
Press, Cambridge, 2007. a
Quinn, P., Beven, K., Chevallier, P., and Planchon, O.: The prediction of
hillslope flow paths for distributed hydrological modelling using digital
terrain models, Hydrol. Process., 5, 59–79, https://doi.org/10.1002/hyp.3360050106, 1991. a
Rae, J. G. L., Adalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory,
J. M., Hewitt, H. T., Lowe, J. A., Lucas-Picher, P., Mottram, R. H., Payne, A.
J., Ridley, J. K., Shannon, S. R., van de Berg, W. J., van de Wal, R. S. W., and
van den Broeke, M. R.: Greenland ice sheet surface mass balance: evaluating
simulations and making projections with regional climate models, The Cryosphere,
6, 1275–1294, https://doi.org/10.5194/tc-6-1275-2012, 2012. a
Raymond, M. J. and Gudmundsson, G. H.: Estimating basal properties of ice
streams from surface measurements: a non-linear Bayesian inverse approach
applied to synthetic data, The Cryosphere, 3, 265–278, https://doi.org/10.5194/tc-3-265-2009, 2009. a, b
Raymond, M. J. and Gudmundsson, G. H.: On the relationship between surface and
basal properties on glaciers, ice sheets, and ice streams, J. Geophys. Res.-Solid
Ea., 110, B08411, https://doi.org/10.1029/2005JB003681, 2011. a
Rempel, A. W.: Effective stress profiles and seepage flows beneath glaciers and
ice sheets, J. Glaciol., 55, 431–443, https://doi.org/10.3189/002214309788816713, 2009. a
Royden, L. and Perron, J. T.: Solutions of the stream power equation and
application to the evolution of river longitudinal profiles, J. Geophys.
Res.-Earth, 118, 497–518, https://doi.org/10.1002/jgrf.20031, 2013. a
Ryser, C., Lüthi, M. P., Andrews, L. C., Catania, G. A., Funk, M., Hawley, R.,
Hoffman, M., and Neumann, T. A.: Caterpillar-like ice motion in the ablation
zone of the Greenland ice sheet, J. Geophys. Res.-Earth, 119, 2258–2271,
https://doi.org/10.1002/2013JF003067, 2014a. a
Ryser, C., Lüthi, M. P., Andrews, L. C., Hoffman, M. J., Catania, G. A.,
Hawley, R. L., Neumann, T. A., and Kristensen, S. S.: Sustained high basal
motion of the Greenland ice sheet revealed by borehole deformation, J. Glaciol.,
60, 647–660, https://doi.org/10.3189/2014JoG13J196, 2014b. a
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature,
468, 803–806, https://doi.org/10.1038/nature09618, 2010. a, b, c, d
Schorghofer, N. and Rothman, D. H.: Acausal relations between topographic slope
and drainage area, Geophys. Res. Lett., 29, 11-1–11-4, https://doi.org/10.1029/2002GL015144, 2002. a
Schwanghart, W. S. D.: TopoToolbox 2 – MATLAB-based software for topographic
analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7,
https://doi.org/10.5194/esurf-2-1-2014, 2014. a, b
Seidl, M. A. and Dietrich, W. E.: The problem of channel erosion into bedrock,
Catena Supplement, 23, 101–124, 1992. a
Selmes, N., Murray, T., and James, T. D.: Fast draining lakes on the Greenland
Ice Sheet, Geophys. Res. Lett., 38, l15501, https://doi.org/10.1029/2011GL047872, 2011. a, b, c
Sergienko, O. V.: Glaciological twins: basally controlled subglacial and
supraglacial lakes, J. Glaciol., 59, 3–8, https://doi.org/10.3189/2013JoG12J040, 2013. a, b
Shannon, S. R., Payne, A. J., Bartholomew, I. D., van den Broeke, M. R., Edwards,
T. L., Fettwei, X., Gagliardini, O., Gillet-Chaulet, F., Goelzer, H., Hoffman,
M. J., Huybrechts, P., Mair, D. W. F., Nienow, P. W., Perego, M., Price, S. F.,
Smeets, C. J. P. P., Sole, A. J., van de Wal, R. S. W., and Zwinger, T.: Enhanced
basal lubrication and the contribution of the Greenland ice sheet to future
sea-level rise, P. Natl. Acad. Sci. USA, 110, 14156–14161, https://doi.org/10.1073/pnas.1212647110, 2013. a, b
Smith, L. C., Yang, K., Pitcher, L., Overstreet, B., Chu, V., Rennermalm, A.,
Ryan, J., Cooper, M., Gleason, C., Tedesco, M., Jeyeratnam, J., As, D., Broeke,
M., Berg, W., Noel, B., Langen, P., Cullather, R., Zhao, B., Willis, M., Hubbard,
A., Box, J., Jenner, B., and Behar, A.: Direct measurements of meltwater runoff
on the Greenland ice sheet surface, P. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.1707743114, in press, 2017. a, b
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H., Rennermalm,
A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T., Moustafa, S. E.,
Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D. C., Sheng, Y., and
Balog, J.: Efficient meltwater drainage through supraglacial streams and rivers
on the southwest Greenland ice sheet, P. Natl. Acad. Sci. USA, 112, 1001–1006,
https://doi.org/10.1073/pnas.1413024112, 2015. a, b, c, d
Sole, A. J., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., King, M. A.,
Burke, M. J., and Joughin, I.: Seasonal speedup of a Greenland marine-terminating
outlet glacier forced by surface melt-induced changes in subglacial hydrology,
J. Geophys. Res.-Earth, 116, F03014, https://doi.org/10.1029/2010JF001948, 2011. a, b, c, d, e, f
Stein, S. and Wysession, M.: An Introduction to Seismology, Earthquakes, and
Earth Structure, Blackwell Publishing, 2005. a
Stevens, L. A., Behn, M. D., McGuire, J. J., Das, S. B., Joughin, I., Herring,
T., Shean, D. E., and King, M. A.: Greenland supraglacial lake drainages
triggered by hydrologically induced basal slip, Nature, 522, 73–76, https://doi.org/10.1038/nature14480, 2015. a
Sugden, D. E.: Glacial Erosion by the Laurentide Ice Sheet, J. Glaciol., 20,
367–391, https://doi.org/10.3189/S0022143000013915, 1978. a, b
Tedstone, A. J., Nienow, P. W., Gourmelen, N., and Sole, A. J.: Greenland ice
sheet annual motion insensitive to spatial variations in subglacial hydraulic
structure, Geophys. Res. Lett., 41, 8910–8917, https://doi.org/10.1002/2014GL062386, 2014. a, b, c
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice Stream B,
west Antarctica: 2 Undrained plastic bed model, J. Geophys. Res.-Solid Ea., 105,
483–494, https://doi.org/10.1029/1999JB900328, 2000. a, b
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de
Berg, W. J., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning
Recent Greenland Mass Loss, Science, 326, 984–986, https://doi.org/10.1126/science.1178176, 2009. a
van den Broeke, M. R., Smeets, C. J. P. P., and van de Wal, R. S. W.: The
seasonal cycle and interannual variability of surface energy balance and melt
in the ablation zone of the west Greenland ice sheet, The Cryosphere, 5, 377–390,
https://doi.org/10.5194/tc-5-377-2011, 2011. a
Warren, S. D., Hohmann, M. G., Auerswald, K., and Mitasova, H.: An evaluation
of methods to determine slope using digital elevation data, Catena, 58, 215–233,
https://doi.org/10.1016/j.catena.2004.05.001, 2004. a, b
Weertman, J.: Traveling Waves on Glaciers, US Naval Research Laboratory,
Washington, D.C., USA, 1958. a
Wegmann, K. W., Zurek, B. D., Regalla, C. A., Bilardello, D., Wollenberg, J. L.,
Kopczynski, S. E., Ziemann, J. M., Haight, S. L., Apgar, J. D., Zhao, C., and
Pazzaglia, F. J.: Position of the Snake River watershed divide as an indicator
of geodynamic processes in the greater Yellowstone region, western North America,
Geosphere, 3, 271–281, https://doi.org/10.1130/GES00083.1, 2007. a
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling
channelized and distributed subglacial drainage in two dimensions, J. Geophys.
Res.-Earth, 118, 2140–2158, https://doi.org/10.1002/jgrf.20146, 2013. a, b, c, d
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision
model: Implications for height limits of mountain ranges, landscape response
timescales, and research needs, J. Geophys. Res.-Solid Ea., 104, 17661–17674,
https://doi.org/10.1029/1999JB900120, 1999. a, b, c
Wright, P. J., Harper, J. T., Humphrey, N. F., and Meierbachtol, T. W.:
Measured basal water pressure variability of the western Greenland Ice Sheet:
Implications for hydraulic potential, J. Geophys. Res.-Earth, 121, 1134–1147,
https://doi.org/10.1002/2016JF003819, 2016.
a, b
Yang, K., Smith, L. C., Chu, V. W., Gleason, C. J., and Li, M.: A Caution on
the Use of Surface Digital Elevation Models to Simulate Supraglacial Hydrology
of the Greenland Ice Sheet, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens.,
8, 5212–5224, https://doi.org/10.1109/JSTARS.2015.2483483, 2015. a, b, c, d, e
Yang, K., Smith, L. C., Karlstrom, L., Cooper, M. G., Tedesco, M., van As, D.,
Cheng, X., Chen, Z., and Li, M.: Supraglacial meltwater routing through internally
drained catchments on the Greenland Ice Sheet surface, The Cryosphere Discuss.,
https://doi.org/10.5194/tc-2018-145, in review, 2018. a
Young, T. J., Schroeder, D. M., Christoffersen, P., Lok, L. B., Nicholls, K. W.,
Brennan, P. V., Doyle, S. H., Hubbard, B., and Hubbard, A.: Resolving the
internal and basal geometry of ice masses using imaging phase-sensitive radar,
J. Glaciol., 64, 649–660, https://doi.org/10.1017/jog.2018.54, 2018. a
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.:
Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow, Science, 297,
218–222, https://doi.org/10.1126/science.1072708, 2002. a
Short summary
Understanding ice sheet surface meltwater routing is important for modeling and predicting ice sheet evolution. We determined that bed topography underlying the Greenland Ice Sheet is the primary influence on 1–10 km scale ice surface topography, and on drainage-basin-scale surface meltwater routing. We provide a simple means of predicting the response of surface meltwater routing to changing ice flow conditions and explore the implications of this for subglacial hydrology.
Understanding ice sheet surface meltwater routing is important for modeling and predicting ice...