Articles | Volume 12, issue 4
https://doi.org/10.5194/tc-12-1499-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-1499-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301, USA
Johan Liakka
Nansen Environmental and Remote Sensing Center, Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Johan Liakka and Marcus Lofverstrom
Clim. Past, 14, 887–900, https://doi.org/10.5194/cp-14-887-2018, https://doi.org/10.5194/cp-14-887-2018, 2018
Short summary
Short summary
This study highlights the counterintuitive result that continental ice sheets can also induce a warming, in particular in the Arctic region. The warming is explained by an increased northward heat transport, resulting from interactions between the atmospheric circulation and ice sheet topography. There is thus an important feedback between ice sheets and temperature, which can help to explain the differences in ice distribution between the Last Glacial Maximum and earlier glacial periods.
M. Löfverström, R. Caballero, J. Nilsson, and J. Kleman
Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, https://doi.org/10.5194/cp-10-1453-2014, 2014
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Johan Liakka and Marcus Lofverstrom
Clim. Past, 14, 887–900, https://doi.org/10.5194/cp-14-887-2018, https://doi.org/10.5194/cp-14-887-2018, 2018
Short summary
Short summary
This study highlights the counterintuitive result that continental ice sheets can also induce a warming, in particular in the Arctic region. The warming is explained by an increased northward heat transport, resulting from interactions between the atmospheric circulation and ice sheet topography. There is thus an important feedback between ice sheets and temperature, which can help to explain the differences in ice distribution between the Last Glacial Maximum and earlier glacial periods.
Johan Liakka, Marcus Löfverström, and Florence Colleoni
Clim. Past, 12, 1225–1241, https://doi.org/10.5194/cp-12-1225-2016, https://doi.org/10.5194/cp-12-1225-2016, 2016
Short summary
Short summary
The present study explains why Scandinavia was ice-covered 20 000 years ago, while Siberia was mostly ice free. The authors show that the ice-sheet extent in Eurasia was to a large extent controlled by atmospheric circulation changes due to the ice sheet in North America. As the North American ice sheet becomes larger, it induces a cooling in Europe and a warming in Siberia: this climatic pattern forces the Eurasian ice sheet to migrate westward until it is centered over Scandinavia.
J. Liakka, J. T. Eronen, H. Tang, and F. T. Portmann
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-4535-2014, https://doi.org/10.5194/cpd-10-4535-2014, 2014
Preprint withdrawn
M. Löfverström, R. Caballero, J. Nilsson, and J. Kleman
Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, https://doi.org/10.5194/cp-10-1453-2014, 2014
Related subject area
Discipline: Ice sheets | Subject: Climate Interactions
A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats
How does a change in climate variability impact the Greenland ice-sheet surface mass balance?
Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run
CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica
Brief communication: Understanding solar geoengineering's potential to limit sea level rise requires attention from cryosphere experts
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Short summary
Marine-terminating glaciers have recently retreated dramatically, but the role of anthropogenic forcing remains uncertain. We use idealized model simulations to develop a framework for assessing the probability of rapid retreat in the context of natural climate variability. Our analyses show that century-scale anthropogenic trends can substantially increase the probability of retreats. This provides a roadmap for future work to formally assess the role of human activity in recent glacier change.
Tobias Zolles and Andreas Born
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-379, https://doi.org/10.5194/tc-2021-379, 2022
Revised manuscript accepted for TC
Short summary
Short summary
The Greenland ice-sheet largely depends on the climate state. The uncertainties associated with the year-to-year variability have only a marginal impact on our simulated surface mass budget, this increases our confidence in projections and reconstructions. Basing the simulations based on proxies for, f.ex., temperature, overestimates the surface mass balance, as climatologies lead to small amounts of snowfall every day. This can be reduced by including sub-monthly precipitation variability.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021, https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
Short summary
We use empirical run-time bias correction (also called flux correction) to correct the systematic errors of the ARPEGE atmospheric climate model. When applying the method to future climate projections, we found a lesser poleward shift and an intensification of the maximum of westerly winds present in the southern high latitudes. This yields a significant additional warming of +0.6 to +0.9 K of the Antarctic Ice Sheet with respect to non-corrected control projections using the RCP8.5 scenario.
Alice Barthel, Cécile Agosta, Christopher M. Little, Tore Hattermann, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle
The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, https://doi.org/10.5194/tc-14-855-2020, 2020
Short summary
Short summary
We compare existing coupled climate models to select a total of six models to provide forcing to the Greenland and Antarctic ice sheet simulations of the Ice Sheet Model Intercomparison Project (ISMIP6). We select models based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century.
Peter J. Irvine, David W. Keith, and John Moore
The Cryosphere, 12, 2501–2513, https://doi.org/10.5194/tc-12-2501-2018, https://doi.org/10.5194/tc-12-2501-2018, 2018
Short summary
Short summary
Stratospheric aerosol geoengineering, a form of solar geoengineering, is a proposal to add a reflective layer of aerosol to the upper atmosphere. This would reduce sea level rise by slowing the melting of ice on land and the thermal expansion of the oceans. However, there is considerable uncertainty about its potential efficacy. This article highlights key uncertainties in the sea level response to solar geoengineering and recommends approaches to address these in future work.
Cited articles
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K.,
and Blatter, H.: Insolation-driven 100,000-year glacial cycles and
hysteresis of ice-sheet volume, Nature, 500, 190–193,
https://doi.org/10.1038/nature12374, 2013. a
Bauer, E. and Ganopolski, A.: Comparison of surface mass balance of ice
sheets simulated by positive-degree-day method and energy balance approach,
Clim. Past, 13, 819–832, https://doi.org/10.5194/cp-13-819-2017, 2017. a
Bonelli, S., Charbit, S., Kageyama, M., Woillez, M.-N., Ramstein, G., Dumas,
C., and Quiquet, A.: Investigating the evolution of major Northern Hemisphere
ice sheets during the last glacial-interglacial cycle, Clim. Past, 5,
329–345, https://doi.org/10.5194/cp-5-329-2009, 2009. a, b
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt,
J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt,
C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel,
U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of
PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part
1: experiments and large-scale features, Clim. Past, 3, 261–277,
https://doi.org/10.5194/cp-3-261-2007, 2007.
a, b
Braithwaite, R. J. and Olesen, O. B.: Calculation of glacier ablation from air
temperature, West Greenland, in: Glacier fluctuation and climate change,
edited by: Oerlemans, J., 219–233, Kluwer, Dordrecht, 1989. a
Calov, R. and Greve, R.: A semi-analytical solution for the positive
degree-day model with stochastic temperature variations, J.
Glaciol., 51, 173–175, 2005. a
Charbit, S., Ritz, C., and Ramstein, G.: Simulations of Northern Hemisphere
ice-sheet retreat:: sensitivity to physical mechanisms involved during the
Last Deglaciation, Quaternary Sci. Rev., 21, 243–265, 2002. a
Charbit, S., Ritz, C., Philippon, G., Peyaud, V., and Kageyama, M.: Numerical
reconstructions of the Northern Hemisphere ice sheets through the last
glacial-interglacial cycle, Clim. Past, 3, 15–37,
https://doi.org/10.5194/cp-3-15-2007, 2007. a, b
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R.,
Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S.-J., Zhang,
M., and Dai, Y.: Description of the NCAR Community Atmosphere Model (CAM3),
Tech. Rep. NCAR/TN464-STR, National Center for Atmospheric Research, Boulder,
CO, p. 226, 2004. a, b, c, d
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S.,
Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B.,
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C.,
Collins, W. J., Cox, P., Driouech, F., Emori, S.,
Eyring, V., Forest, C., Gleckler, P., Guilyardi, E.,
Jakob, C., Kattsov, V., Reason, C., and Rummukaines, M.:
The community climate system model version 3 (CCSM3), J. Climate,
19, 2122–2143, 2006a. a
Demory, M.-E., Vidale, P. L., Roberts, M. J., Berrisford, P., Strachan, J.,
Schiemann, R., and Mizielinski, M. S.: The role of horizontal resolution in
simulating drivers of the global hydrological cycle, Clim. Dynam., 42,
2201–2225, https://doi.org/10.1007/s00382-013-1924-4, 2014. a, b
Dolan, A. M., Koenig, S. J., Hill, D. J., Haywood, A. M., and DeConto, R. M.:
Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental
design, Geosci. Model Dev., 5, 963–974,
https://doi.org/10.5194/gmd-5-963-2012, 2012. a
Fausto, R. S., Ahlstrom, A. P., Van As, D., Boggild, C. E., and Johnsen, S. J.:
A new present-day temperature parameterization for Greenland, J.
Glaciol., 55, 95–105, 2009a. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins,
W. J., Cox, P., Driouech, F., Emori, S., Eyring, V.,
Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V.,
Reason, C., and Rummukaines, M.: Evaluation of
Climate Models, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Climate Change, 5, 741–866,
2013. a
Fyke, J. G., Sacks, W. J., and Lipscomb, W. H.: A technique for generating
consistent ice sheet initial conditions for coupled ice sheet/climate models,
Geosci. Model Dev., 7, 1183–1195, https://doi.org/10.5194/gmd-7-1183-2014,
2014. a
Ganopolski, A., Calov, R., and Claussen, M.: Simulation of the last glacial
cycle with a coupled climate ice-sheet model of intermediate complexity,
Clim. Past, 6, 229–244, https://doi.org/10.5194/cp-6-229-2010, 2010. a
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma,
J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.-M., Deleersnijder,
E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales
Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E.
J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann,
A., and Weber, S. L.: Description of the Earth system model of intermediate
complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633,
https://doi.org/10.5194/gmd-3-603-2010, 2010. a
Greve, R.: Application of a Polythermal Three-Dimensional Ice Sheet Model to
the Greenland Ice Sheet: Response to Steady-State and Transient Climate
Scenarios, J. Climate, 10, 901–918, 1997. a
Greve, R. and Blatter, H.: Dynamics of ice sheets and glaciers, Springer
Science & Business Media, 2009. a
Hack, J. J., Caron, J. M., Danabasoglu, G., Oleson, K. W., Bitz, C., and
Truesdale, J. E.: CCSM–CAM3 climate simulation sensitivity to changes in
horizontal resolution, J. climate, 19, 2267–2289, 2006. a
Herrington, A. and Poulsen, C.: Terminating the Last Interglacial: The role of
ice sheet – climate feedbacks in a GCM asynchronously coupled to an ice sheet
model, J. Climate, 25, 1871–1882, 2012. a
Hourdin, F., Foujols, M.-A., Codron, F., Guemas, V., Dufresne, J.-L., Bony,
S., Denvil, S., Guez, L., Lott, F., Ghattas, J., Braconnot, P., Marti, O.,
Meurdesoif, Y., and Bopp, L.: Climate and sensitivity of the IPSL-CM5A
coupled model: impact of the LMDZ atmospheric grid configuration, Clim.
Dynam., online first: https://doi.org/10.1007/s00382-012-1411-3, 2012. a, b, c
Hutter, K.: Theoretical glaciology: material science of ice and the
mechanics of glaciers and ice sheets, Reidel, Dordrecht, 1983. a
Jackson, C.: Sensitivity of stationary wave amplitude to regional changes in
Laurentide ice sheet topography in single-layer models of the atmosphere,
J. Geophys. Res., 105, 24443—24454,
https://doi.org/10.1029/2000JD900377, 2000. a
Janssens, I. and Huybrechts, P.: The treatment of meltwater retention in
mass-balance parameterizations of the Greenland ice sheet, Ann.
Glaciol., 31, 133–140, 2000. a
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O.,
Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J.-Y.,
Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande,
A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H.,
Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A.,
Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin,
E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution to CMIP6 –
Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last
Glacial Maximum experiments and PMIP4 sensitivity experiments, Geosci. Model
Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, 2017. a, b
Kleman, J., Fastook, J., Ebert, K., Nilsson, J., and Caballero, R.: Pre-LGM
Northern Hemisphere ice sheet topography, Clim. Past, 9, 2365–2378,
https://doi.org/10.5194/cp-9-2365-2013, 2013. a, b, c
Liakka, J.: Interactions between topographically and thermally
forced stationary waves: implications for ice-sheet evolution, Tellus A, 64,
11088, https://doi.org/10.3402/tellusa.v64i0.11088, 2012. a
Liakka, J., Nilsson, J., and Löfverström, M.: Interactions between
stationary waves and ice sheets: linear versus nonlinear atmospheric
response, Clim. Dynam., 38, 1249–1262, 2011. a
Liakka, J., Löfverström, M., and Colleoni, F.: The impact of the North
American glacial topography on the evolution of the Eurasian ice sheet over
the last glacial cycle, Clim. Past, 12, 1225–1241,
https://doi.org/10.5194/cp-12-1225-2016, 2016. a, b, c
Löfverström, M. and Liakka, J.: On the limited ice
intrusion in Alaska at the LGM, Geophys. Res. Lett., 43,
11030–11038, https://doi.org/10.1002/2016GL071012, 2016. a
Löfverström, M. and Lora, J. M.: Abrupt regime shifts in the North
Atlantic atmospheric circulation over the last deglaciation, Geophys.
Res. Lett., 44, 8047–8055, https://doi.org/10.1002/2017GL074274, 2017. a
Löfverström, M., Caballero, R., Nilsson, J., and Kleman, J.: Evolution of the
large-scale atmospheric circulation in response to changing ice sheets over
the last glacial cycle, Clim. Past, 10, 1453–1471,
https://doi.org/10.5194/cp-10-1453-2014, 2014. a
Löfverström, M., Liakka, J., and Kleman, J.: The North American
Cordillera – An impediment to growing the continent-wide Laurentide Ice
Sheet, J. Climate, 28, 9433–9450, 2015. a
Loomis, S. E., Russell, J. M., Verschuren, D., Morrill, C., De Cort, G.,
Damsté, J. S. S., Olago, D., Eggermont, H., Street-Perrott, F. A., and
Kelly, M. A.: The tropical lapse rate steepened during the Last Glacial
Maximum, Science Adv., 3, e1600815, https://doi.org/10.1126/sciadv.1600815, 2017. a
Lora, J. M., Mitchell, J. L., and Tripati, A. E.: Abrupt reorganization of
North Pacific and western North American climate during the last
deglaciation, Geophys. Res. Lett., 43, 11796–11804,
https://doi.org/10.1002/2016GL071244, 2016. a
Marsiat, I.: Simulation of the Northern Hemisphere continental ice sheets over
the last glacial-interglacial cycle: experiments with a latitude-longitude
vertically integrated ice sheet model coupled to a zonally averaged climate
model, Paleoclimates, 1, 59–98, 1994. a
Nowicki, S. M. J., Payne, A., Larour, E., Seroussi, H., Goelzer, H.,
Lipscomb, W., Gregory, J., Abe-Ouchi, A., and Shepherd, A.: Ice Sheet Model
Intercomparison Project (ISMIP6) contribution to CMIP6, Geosci. Model Dev.,
9, 4521–4545, https://doi.org/10.5194/gmd-9-4521-2016, 2016. a
Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., and
Kothavala, Z.: Last glacial maximum and Holocene climate in CCSM3, J. Climate, 19, 2526–2544, 2006. a
Pausata, F. S. R. and Löfverström, M.: On the enigmatic similarity in
Greenland δ18O between the Oldest and Younger Dryas, Geophys.
Res. Lett., 42, 10470–10477, https://doi.org/10.1002/2015GL066042, 2015. a
Peltier, W.: Global glacial isostasy and the surface of the ice-age Earth: The
ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 111–149,
2004.
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A.,
Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of
intermediate complexity. Part I: model description and performance for
present climate, Clim. Dynam., 16, 1–17, 2000. a
Pfeffer, W. T., Meier, M. F., and Illangasekare, T. H.: Retention of Greenland
runoff by refreezing: implications for projected future sea level change,
J. Geophys. Res.-Oceans, 96, 22117–22124, 1991. a
Roe, G. H. and Lindzen, R. S.: The Mutual Interaction between
Continental-Scale Ice Sheets and Atmospheric Stationary Waves, J. Climate,
14, 1450–1465, 2001. a
Smith, R. S., Gregory, J. M., and Osprey, A.: A description of the FAMOUS
(version XDBUA) climate model and control run, Geosci. Model Dev., 1, 53–68,
https://doi.org/10.5194/gmd-1-53-2008, 2008. a
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell,
J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen,
M., Hubberten, H., Ingolfsson, O., Jakobsson, M., Kjaer, K., Larsen, E.,
Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., Matiouchkov, A.,
Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto,
A., Siegert, C., Siegert, M. J., Spielhagen, R. F., and Stein, R.: Late
Quaternary ice sheet history of northern Eurasia, Quaternary Sci.
Rev., 23, 1229–1271, 2004. a
Van der Veen, C. J.: Fundamentals of glacier dynamics, CRC Press, 2013. a
Weertman, J.: The theory of glacier sliding, J. Glaciol., 5,
287–303, 1964. a
Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate
shifts controlled by ice sheet changes, Nature, 512, 290–294, 2014. a