Articles | Volume 12, issue 4
https://doi.org/10.5194/tc-12-1211-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-1211-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula
Climate Lab, Institute for Geography, Bremen University, Bremen, Germany
Center for Remote Sensing of Land Surfaces (ZFL), Bonn University, Bonn, Germany
Damián A. López
Center for Remote Sensing of Land Surfaces (ZFL), Bonn University, Bonn, Germany
Institute of Geology and Mineralogy, University Cologne, Cologne, Germany
Adrián Silva-Busso
Faculty of Exact and Natural Sciences, University Buenos Aires, Buenos Aires, Argentina
Instituto Nacional de Agua (INA), Ezeiza, Buenos Aires, Argentina
Related authors
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Ulrike Falk and Adrián Silva-Busso
Hydrol. Earth Syst. Sci., 25, 3227–3244, https://doi.org/10.5194/hess-25-3227-2021, https://doi.org/10.5194/hess-25-3227-2021, 2021
Short summary
Short summary
This paper focuses on the groundwater flow aspects of a small hydrological catchment at the northern tip of the Antarctic Peninsula. This region has experienced drastic climatological changes in the recent past. The basin is representative for the rugged coastline of the peninsula. It is discussed as a case study for possible future evolution of similar basins further south. Results include a quantitative analysis of glacial and groundwater contribution to total discharge into coastal waters.
Martin Rückamp, Ulrike Falk, Katja Frieler, Stefan Lange, and Angelika Humbert
Earth Syst. Dynam., 9, 1169–1189, https://doi.org/10.5194/esd-9-1169-2018, https://doi.org/10.5194/esd-9-1169-2018, 2018
Short summary
Short summary
Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 °C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change. The projected sea-level rise ranges between 21–38 mm by 2100
and 36–85 mm by 2300. Our results indicate that uncertainties in the projections stem from the underlying climate data.
Francisco Fernandoy, Dieter Tetzner, Hanno Meyer, Guisella Gacitúa, Kirstin Hoffmann, Ulrike Falk, Fabrice Lambert, and Shelley MacDonell
The Cryosphere, 12, 1069–1090, https://doi.org/10.5194/tc-12-1069-2018, https://doi.org/10.5194/tc-12-1069-2018, 2018
Short summary
Short summary
Through the geochemical analysis of the surface snow of a glacier at the northern tip of the Antarctic Peninsula, we aimed to investigate how atmosphere and ocean conditions of the surrounding region are varying under the present climate scenario. We found that meteorological conditions strongly depend on the extension of sea ice. Our results show a slight cooling of the surface air during the last decade at this site. However, the general warming tendency for the region is still on-going.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Ulrike Falk and Adrián Silva-Busso
Hydrol. Earth Syst. Sci., 25, 3227–3244, https://doi.org/10.5194/hess-25-3227-2021, https://doi.org/10.5194/hess-25-3227-2021, 2021
Short summary
Short summary
This paper focuses on the groundwater flow aspects of a small hydrological catchment at the northern tip of the Antarctic Peninsula. This region has experienced drastic climatological changes in the recent past. The basin is representative for the rugged coastline of the peninsula. It is discussed as a case study for possible future evolution of similar basins further south. Results include a quantitative analysis of glacial and groundwater contribution to total discharge into coastal waters.
Martin Rückamp, Ulrike Falk, Katja Frieler, Stefan Lange, and Angelika Humbert
Earth Syst. Dynam., 9, 1169–1189, https://doi.org/10.5194/esd-9-1169-2018, https://doi.org/10.5194/esd-9-1169-2018, 2018
Short summary
Short summary
Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 °C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change. The projected sea-level rise ranges between 21–38 mm by 2100
and 36–85 mm by 2300. Our results indicate that uncertainties in the projections stem from the underlying climate data.
Francisco Fernandoy, Dieter Tetzner, Hanno Meyer, Guisella Gacitúa, Kirstin Hoffmann, Ulrike Falk, Fabrice Lambert, and Shelley MacDonell
The Cryosphere, 12, 1069–1090, https://doi.org/10.5194/tc-12-1069-2018, https://doi.org/10.5194/tc-12-1069-2018, 2018
Short summary
Short summary
Through the geochemical analysis of the surface snow of a glacier at the northern tip of the Antarctic Peninsula, we aimed to investigate how atmosphere and ocean conditions of the surrounding region are varying under the present climate scenario. We found that meteorological conditions strongly depend on the extension of sea ice. Our results show a slight cooling of the surface air during the last decade at this site. However, the general warming tendency for the region is still on-going.
Related subject area
Discipline: Ice sheets | Subject: Atmospheric Interactions
Understanding the drivers of near-surface winds in Adélie Land, East Antarctica
Extending the CW3E Atmospheric River Scale to the Polar Regions
Control of the temperature signal in Antarctic proxies by snowfall dynamics
Atmospheric drivers of melt-related ice speed-up events on the Russell Glacier in southwest Greenland
Climatology and surface impacts of atmospheric rivers on West Antarctica
Continuous monitoring of surface water vapour isotopic compositions at Neumayer Station III, East Antarctica
Mapping the aerodynamic roughness of the Greenland Ice Sheet surface using ICESat-2: evaluation over the K-transect
Reconciling the surface temperature–surface mass balance relationship in models and ice cores in Antarctica over the last 2 centuries
Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
The Cryosphere, 18, 2239–2256, https://doi.org/10.5194/tc-18-2239-2024, https://doi.org/10.5194/tc-18-2239-2024, 2024
Short summary
Short summary
Coastal surface winds in Antarctica are amongst the strongest winds on Earth. They are either driven by the cooling of the surface air mass by the ice sheet (katabatic) or by large-scale pressure systems. Here we compute the relative contribution of these drivers. We find that seasonal variations in the wind speed come from the katabatic acceleration, but, at a 3-hourly timescale, none of the large-scale or katabatic accelerations can be considered as the main driver.
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
EGUsphere, https://doi.org/10.5194/egusphere-2024-254, https://doi.org/10.5194/egusphere-2024-254, 2024
Short summary
Short summary
Atmospheric rivers are long and narrow corridors of strong water vapor transport in the atmosphere. ARs play an important role in extreme weather in polar regions, including heavy rain/snow, heat wave, and surface melt. The standard AR scale is developed based on the mid-latitude climate and is insufficient for polar regions. This paper introduces an extended version of the AR scale tuned to polar regions, aiming to quantify polar ARs objectively based on their strength and impact.
Aymeric P. M. Servettaz, Cécile Agosta, Christoph Kittel, and Anaïs J. Orsi
The Cryosphere, 17, 5373–5389, https://doi.org/10.5194/tc-17-5373-2023, https://doi.org/10.5194/tc-17-5373-2023, 2023
Short summary
Short summary
It has been previously observed in polar regions that the atmospheric temperature is warmer during precipitation events. Here, we use a regional atmospheric model to quantify the temperature changes associated with snowfall events across Antarctica. We show that more intense snowfall is statistically associated with a warmer temperature anomaly compared to the seasonal average, with the largest anomalies seen in winter. This bias may affect water isotopes in ice cores deposited during snowfall.
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023, https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet's mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analyzed how they induce local melting and ice accelerations.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Saeid Bagheri Dastgerdi, Melanie Behrens, Jean-Louis Bonne, Maria Hörhold, Gerrit Lohmann, Elisabeth Schlosser, and Martin Werner
The Cryosphere, 15, 4745–4767, https://doi.org/10.5194/tc-15-4745-2021, https://doi.org/10.5194/tc-15-4745-2021, 2021
Short summary
Short summary
In this study, for the first time, water vapour isotope measurements in Antarctica for all seasons of a year are performed. Local temperature is identified as the main driver of δ18O and δD variability. A similar slope of the temperature–δ18O relationship in vapour and surface snow points to the water vapour isotope content as a potential key driver. This dataset can be used as a new dataset to evaluate the capability of isotope-enhanced climate models.
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Rajashree Tri Datta, Marco Tedesco, Cecile Agosta, Xavier Fettweis, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 12, 2901–2922, https://doi.org/10.5194/tc-12-2901-2018, https://doi.org/10.5194/tc-12-2901-2018, 2018
Short summary
Short summary
Surface melting on the East Antarctic Peninsula (East AP) has been linked to ice shelf collapse, including the Larsen A (1995) and Larsen B (2002) ice shelves. Regional climate models (RCMs) are a valuable tool to understand how wind patterns and general warming can impact the stability of ice shelves through surface melt. Here, we evaluate one such RCM (Modèle Atmosphérique Régionale) over the East AP, including the remaining Larsen C ice shelf, by comparing it to satellite and ground data.
Cited articles
AARI: Meteorological observations at Bellingshausen, Arctic and
Antarctic Research Institute, St. Petersburg, Russia, available at:
http://www.aari.nw.ru/index_en.html, last access: 1 January 2016. a
Abele, D., Vazquez, S., Buma, A., Hernandez, E., Quiroga, C., Held, C.,
Frickenhaus, S., Harms, L., Lopez, J., Helmke, E., and Mac Cormack, W. P.:
Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove:
Genomics and ecological implications, Mar. Genom., 33, 1–11,
https://doi.org/10.1016/j.margen.2017.05.001, 2017. a
Abram, N., Thomas, E. R., McConnell, J. R., Mulvaney, R., Bracegirdle, T. J., Sime, L. C., and Aristarain, A.: Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica, J. Geophys. Res., 115, 9, https://doi.org/10.1029/2010JD014644, 2010. a
Andreas, E.: IA theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184, 1987. a
Bintanja, R.: The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling, Antarct. Sci., 7, 315–325, https://doi.org/10.1017/S0954102095000435, 1995. a, b
Birkenmajer, K.: Retreat of Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001, B. Pol. Acad. Sci.-Earth, 50, 15–29, 2002. a
Bishop, M. P., Olsenholler, J. A., Shroder, J. F., Barry, R. G., Raup, B. H.,
Bush, A. B., Copland, L., Dwyer, J. L., Fountain, A. G., Haeberli, W.,
Kääb, A., Paul, F., Hall, D. K., Kargel, J. D., Molnia, B. F., Trabant,
D. C., and Wessels, R.: Global Land Ice Measurements from Space (GLIMS):
remote sensing and GIS investigations of the Earth's cryosphere, Geocarto
Int., 19, 57–84, 2004. a
Braun, M., Humbert, A., and Moll, A.: Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability, The Cryosphere, 3, 41–56, https://doi.org/10.5194/tc-3-41-2009, 2009. a, b
Braun, M., Betsch, T., and Seehaus, T.: King George Island TanDEM-X DEM, link to GeoTIFF, Geographic Institute, Universitaet Erlangen-Nuernberg, https://doi.org/10.1594/PANGAEA.863567, 2016. a, b
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297, 2006. a
Bromwich, D. H., Rogers, A. N., Kållberg, P., Cullather, R. I., White, J. W., and Kreutz, K. J.: ECMWF analyses and reanalyses depiction of ENSO signal in Antarctic precipitation, J. Climate, 13, 1406–1420, 2000. a
Campbell, G. S. and Norman, J. M.: Environmental Biophysics, 2nd Edn.,
Springer, New York, Berlin, Heidelberg, 2000. a
Cape, M. R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T., and
Domack, E.: Foehn winds link climate-driven warming to ice shelf evolution in
Antarctica, J. Geophys. Res.-Atmos., 120, 11037–11057,
https://doi.org/10.1002/2015JD023465, 2015. a
Chapman, W. L. and Walsh, J. E.: A synthesis of Antarctic temperatures, J. Climate, 20, 4096–4117, 2007. a
Clarke, A., Murphy, E. J., Meredith, M. P., King, J. C., Peck, L. S., Barnes, D. K., and Smith, R. C.: Climate change and the marine ecosystem of the western Antarctic Peninsula, Philos. T. Roy. Soc. B, 362, 149–166, 2007. a
Cook, A., Fox, A., Vaughan, D., and Ferrigno, J.: Retreating glacier fronts on the Antarctic Peninsula over the past half-century, Science, 308, 541–544, 2005. a
Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M., and Hanna, E.: Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise, Science, 308, 1898–1901, 2005. a
De Angelis, H. and Skvarca, P.: Glacier surge after ice shelf collapse, Science, 299, 1560–1562, 2003. a
Doran, P. T., Priscu, J. C., Lyons, W. B., Walsh, J. E., Fountain, A. G.,
McKnight, D. M., Moorhead, D. L., Virginia, R. A., Wall, D. H., Clow, G. D.,
and Fritson, C. H.: Antarctic climate cooling and terrestrial ecosystem
response, Nature, 415, 517–520, 2002. a
Ducklow, H. W., Baker, K., Martinson, D. G., Quetin, L. B., Ross, R. M., Smith, R. C., Stammerjohn, S. E., Vernet, M., and Fraser, W.: Marine pelagic ecosystems: the west Antarctic Peninsula, Philos. T. Roy. Soc. B, 362, 67–94, 2007. a
Eraso, A., and Domínguez, M.: Physicochemical characteristics of the
subglacier discharge in Potter Cove, King George Island, Antarctica, Karst
and Cryokarst, 45, 111–122, 2007. a
Fahnestock, M. A., Abdalati, W., and Shuman, C. A.: Long melt seasons on ice shelves of the Antarctic Peninsula: an analysis using satellite-based microwave emission measurements, Ann. Glaciol., 34, 127–133, 2002. a
Falk, U. and Sala, H.: Continuous meteorological observations at station
ZAWS, Warszawa Icefield, King George Island, Antarctic Peninsula, 2012-01,
PANGAEA, https://doi.org/10.1594/PANGAEA.848704, 2015b. a
Falk, U., López, D., and Silva-Busso, A. A.: Recent changes in glacier mass
balance and equilibrium line altitude and the impact of climatic change on
King George Island, Antarctic Peninsula, PANGAEA,
https://doi.org/10.1594/PANGAEA.874599, 2017. a
Ferron, F. A., Simões, J. C., Aquino, F. E., and Setzer, A. W.: Air
temperature time series for King George Island, Antarctica, Pesquisa
Antártica Brasileira, 4, 155–169, 2004. a
Fogt, R. L. and Zbacnik, E. A.: Sensitivity of the Amundsen Sea low to stratospheric ozone depletion, J. Climate, 27, 9383–9400, 2014. a
Gates, D. M.: Biophysical Ecology, Springer, New York, 611 pp., 1980. a
Heinemann, G. and Falk, U.: Surface winds and energy fluxes near the Greenland ice margin under conditions of katabatic winds, Polarforschung, 71, 15–31, 2002. a
Henkel, S., Kasten, S., Sala, H., Busso, A. S., and Staubwasser, M.:
Effect of increased glacier melt on diagenetic Fe cycling in marine
sediments at King George Island (Antarctica), Mineral. Mag. H: Goldschmidt Abstracts 2013, 77, 1287–1287, 2013. a
Hock, R. and Holmgren, B.: A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden, J. Glaciol., 51, 25–36, 2005. a
Joughin, I., Smith, B. E., and Medley, B.: Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica, Science, 344, 735–738, 2014. a
Martianov, V. and Rakusa-Suszczewski, S.: Ten years of climate observations
at the Arctowski and Bellingshausen stations (King George Is., South
Shetlands, Antarctica), Global change, regional research centres, 80–87,
1989. a
Meier, M. F. and Post, A.: Recent variations in mass net budgets of glaciers
in western North America, in: Symposium at Obergurgl 1962 Variations of
Glaciers, 1962. a
Meredith, M. P. and King, J. C.: Rapid climate change in the ocean west of
the Antarctic Peninsula during the second half of the 20th century, Geophys.
Res. Lett., 32, L19604, https://doi.org/10.1029/2005GL024042, 2005. a
Meredith, M. P., Renfrew, I. A., Clarke, A., King, J. C., and Brandon, M. A.:
Impact of the 1997/98 ENSO on upper ocean characteristics in Marguerite Bay,
western Antarctic Peninsula, J. Geophys. Res.-Oceans, 109, C09013,
https://doi.org/10.1029/2003JC001784, 2004. a
Möller, M., and Schneider, C.: Temporal constraints on future
accumulation-area loss of a major Arctic ice cap due to climate change
(Vestfonna, Svalbard), Sci. Rep.-UK, 5, 8079, https://doi.org/10.1038/srep08079, 2015. a
Monteith, J. and Unsworth, M.: Principles of environmental physics, Arnold, London, 1990. a
Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., and Schofield, O.: Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula, Science, 323, 1470–1473, 2009. a
Orr, A., Marshall, G. J., Hunt, J. C., Sommeria, J., Wang, C.-G., Van Lipzig, N. P., Cresswell, D., and King, J. C.: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds, J. Atmos. Sci., 65, 1396–1413, 2008. a
Osmanoglu, B., Navarro, F. J., Hock, R., Braun, M., and Corcuera, M. I.: Surface velocity and mass balance of Livingston Island ice cap, Antarctica, The Cryosphere, 8, 1807–1823, https://doi.org/10.5194/tc-8-1807-2014, 2014. a
Parish, T. R. and Bromwich, D. H.: Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes, Mon. Weather Rev., 135, 1961–1973, 2007. a
Parkinson, C. L.: Trends in the length of the Southern Ocean sea-ice season, 1979–1999, Ann. Glaciol., 34, 435–440, 2002. a
Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J., and Rignot, E.:
Recent dramatic thinning of largest West Antarctic ice stream triggered by
oceans, Geophys. Res. Lett., 31, L23401, https://doi.org/10.1029/2004GL021284, 2004. a
Peck, L. S., Webb, K. E., and Bailey, D. M.: Extreme sensitivity of biological function to temperature in Antarctic marine species, Funct. Ecol., 18, 625–630, 2004. a
Perlwitz, J., Pawson, S., Fogt, R. L., Nielsen, J. E., and Neff, W. D.:
Impact of stratospheric ozone hole recovery on Antarctic climate, Geophys.
Res. Lett., 35, L08714, https://doi.org/10.1029/2008GL033317, 2008. a
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G.,
Gardner, A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E.
S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H.,
Rich, J., Sharp, M. J., and The Randolph Consortium: The Randolph Glacier
Inventory: a globally complete inventory of glaciers, J. Glaciol., 60,
537–552, 2014. a
QGIS Development Team: QGIS Geographic Information System, available at:
http://www.qgis.org (last access: 1 May 2017), 2016. a
Quartino, M. L., Deregibus, D., Campana, G. L., Latorre, G. E. J., and
Momo, F. R.: Evidence of macroalgal colonization on newly ice-free areas
following glacial retreat in Potter Cove (South Shetland Islands),
Antarctica, PLoS One, 8, e58223, https://doi.org/10.1371/journal.pone.0058223, 2013. a
R Core Team: R: A language and environment for statistical computing,
available at: http://www.R-project.org (last access: 31 August 2017),
2014. a
Rau, F., Mauz, F., de Angelis, H., Jaña, R., Neto, J. A., Skvarca, P., Vogt, S., Saurer, H., and Gossmann, H.: Variations of glacier frontal positions on the northern Antarctic Peninsula, Ann. Glaciol., 39, 525–530, 2004. a
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res. Lett., 38,
L10504, https://doi.org/10.1029/2011GL047109, 2011. a
Rott, H., Skvarca, P., and Nagler, T.: Rapid collapse of northern Larsen ice
shelf, Antarctica, Science, 271, 788–792,
https://doi.org/10.1126/science.271.5250.788, 1996. a
Rückamp, M. and Blindow, N.: King George Island ice cap geometry updated with airborne GPR measurements, Earth Syst. Sci. Data, 4, 23–30, https://doi.org/10.5194/essd-4-23-2012, 2012. a
Scambos, T., Ross, R., Bauer, R., Yermolin, Y., Skvarca, P., Long, D., Bohlander, J., and Haran, T.: Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift, J. Glaciol., 54, 579–591, 2008. a
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, J. Glaciol., 46, 516–530, 2000. a
Schloss, I. R., Abele, D., Moreau, S., Demers, S., Bers, A. V., González, O., and Ferreyra, G. A.: Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica), J. Marine Syst., 92, 53–66, 2012. a
Shepherd, A., Wingham, D., Payne, T., and Skvarca, P.: Larsen ice shelf has progressively thinned, Science, 302, 856–859, 2003. a
Sherrell, R., Lagerström, M., Forsch, K., Stammerjohn, S., and Yager, P.: Dynamics of dissolved iron and other bioactive trace metals (Mn, Ni, Cu, Zn) in the Amundsen
Sea Polynya, Antarctica, Elementa, 3, 000071, https://doi.org/10.12952/journal.elementa.000071,
2015. a
Shuman, C. A. and Stearns, C. R.: Decadal-length composite inland West Antarctic temperature records, J. Climate, 14, 1977–1988, 2001. a
Skvarca, P., Rack, W., Rott, H., DonáNgelo, Y., and IbarzáBal, T.: Evidence of recent climatic warming on the eastern Antarctic Peninsula, Ann. Glaciol., 27, 628–632, 1998. a
Skvarca, P., Rack, W., Rott, H., and Donángelo, T. I.: Climatic trend and the retreat and disintegration of ice shelves on the Antarctic Peninsula: an overview, Polar Res., 18, 151–157, 1999. a
Smeets, C. and Van den Broeke, M.: Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet, Bound.-Lay. Meteorol., 128, 315–338, 2008. a
Smith, R. C., Ainley, D., Baker, K., Domack, E., Emslie, S., Fraser, B.,
Kennett, J., Leventer, A., Mosley-Thompson, E., Stammerjohn, S., and Vernet,
M.: Marine Ecosystem Sensitivity to Climate Change Historical observations
and paleoecological records reveal ecological transitions in the Antarctic
Peninsula region, BioScience, 49, 393–404, 1999. a
SMN: Meteorological observations at Carlini base, Argentinean
Meteorological Service, Argentina, Buenos Aires, available at:
http://www.smn.gov.ar, last access: 1 January 2016. a
Stammerjohn, S., Massom, R., Rind, D., and Martinson, D.: Regions of rapid
sea ice change: An inter-hemispheric seasonal comparison, Geophys. Res.
Lett., 39, L06501, https://doi.org/10.1029/2012GL050874, 2012. a
Thompson, D. W., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M.,
and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749, 2011. a
Turner, J.: The El Niño–Southern Oscillation and Antarctica, Int. J. Climatol., 24, 1–31, 2004. a
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A.,
Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S.:
Antarctic climate change during the last 50 years, Int. J. Climatol., 25,
279–294, 2005. a
Turner, J., Comiso, J. C., Marshall, G. J., Lachlan-Cope, T. A.,
Bracegirdle, T., Maksym, T., Meredith, M. P., Wang, Z., and Orr, A.:
Non-annular atmospheric circulation change induced by stratospheric ozone
depletion and its role in the recent increase of Antarctic sea ice extent,
Geophys. Res. Lett., 36, L08502, https://doi.org/10.1029/2009GL037524, 2009. a
van den Broeke, M., van As, D., Reijmer, C., and van de Wal, R.: Assessing and improving the quality of unattended radiation observations in Antarctica, J. Atmos. Ocean. Tech., 21, 1417–1431, 2004. a
Van den Broeke, M., Van de Berg, W. J., and Van Meijgaard, E.: Snowfall in
coastal West Antarctica much greater than previously assumed, Geophys. Res.
Lett., 33, L02505, https://doi.org/10.1029/2005GL025239, 2006. a
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.: Recent rapid regional climate warming on the Antarctic Peninsula, Climatic Change, 60, 243–274, 2003. a
Vilaplana, J., and Pallàs, R.: Características y evolución del
manto nivoso en Isla Livingston, in: Actas del V Simposio Español de
Estudios Antárticos, 279–290, 1994. a
Yuan, X.: ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms, Antarct. Sci., 16, 415–425, 2004. a
Short summary
The present study address the glacier–atmosphere relation on King George Island (South Shetland Islands) at the northern Antarctic Peninsula. The focus is on 5 years of glacier mass balance observations and the adaptation of a spatially distributed, physically based mass balance model. The focus is on the analysis of equilibrium line altitude and catchment runoff. The observed changes are expected to have a direct impact on environmental conditions in coastal waters and biota.
The present study address the glacier–atmosphere relation on King George Island (South Shetland...