Articles | Volume 12, issue 4
https://doi.org/10.5194/tc-12-1177-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-1177-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica
Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences and Institute of Eco-Chongming, East China
Normal University, Shanghai 200241, China
Key Laboratory for Polar Science of State Oceanic Administration,
Polar Research Institute of China, Shanghai 200062, China
Meredith G. Hastings
CORRESPONDING AUTHOR
Department of Earth, Environmental and Planetary Sciences and
Institute at Brown for Environment and Society, Brown University,
Providence, Rhode Island 02912, USA
Jinhai Yu
Key Laboratory for Polar Science of State Oceanic Administration,
Polar Research Institute of China, Shanghai 200062, China
School of Geographic and Oceanographic Sciences, Nanjing University,
Nanjing 210023, China
Tianming Ma
Key Laboratory for Polar Science of State Oceanic Administration,
Polar Research Institute of China, Shanghai 200062, China
School of Ocean and Earth Science, Tongji University, Shanghai
200092, China
Zhengyi Hu
Key Laboratory for Polar Science of State Oceanic Administration,
Polar Research Institute of China, Shanghai 200062, China
Chunlei An
Key Laboratory for Polar Science of State Oceanic Administration,
Polar Research Institute of China, Shanghai 200062, China
Chuanjin Li
The State Key Laboratory of the Cryospheric Sciences, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Hongmei Ma
Key Laboratory for Polar Science of State Oceanic Administration,
Polar Research Institute of China, Shanghai 200062, China
Su Jiang
Key Laboratory for Polar Science of State Oceanic Administration,
Polar Research Institute of China, Shanghai 200062, China
Yuansheng Li
Key Laboratory for Polar Science of State Oceanic Administration,
Polar Research Institute of China, Shanghai 200062, China
Related authors
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1810, https://doi.org/10.5194/egusphere-2023-1810, 2023
Short summary
Short summary
Landlocked lakes are crucial in the Antarctic ecosystem and sensitive to climate change. Limited research on their distribution prompted us to develop an automated detection process using deep learning and multi-source satellite imagery. This allowed us to accurately determine the landlocked lakes’ open water (LLOW) area in Antarctica, generating high-resolution time series data. We find that the changes in positive degree days and air temperature predominantly drive variations in the LLOW area.
Guitao Shi, Hongmei Ma, Zhengyi Hu, Zhenlou Chen, Chunlei An, Su Jiang, Yuansheng Li, Tianming Ma, Jinhai Yu, Danhe Wang, Siyu Lu, Bo Sun, and Meredith G. Hastings
The Cryosphere, 15, 1087–1095, https://doi.org/10.5194/tc-15-1087-2021, https://doi.org/10.5194/tc-15-1087-2021, 2021
Short summary
Short summary
It is important to understand atmospheric chemistry over Antarctica under a changing climate. Thus snow collected on a traverse from the coast to Dome A was used to investigate variations in snow chemistry. The non-sea-salt fractions of K+, Mg2+, and Ca2+ are associated with terrestrial inputs, and nssCl− is from HCl. In general, proportions of non-sea-salt fractions of ions to the totals are higher in the interior areas than on the coast, and the proportions are higher in summer than in winter.
G. Shi, A. M. Buffen, M. G. Hastings, C. Li, H. Ma, Y. Li, B. Sun, C. An, and S. Jiang
Atmos. Chem. Phys., 15, 9435–9453, https://doi.org/10.5194/acp-15-9435-2015, https://doi.org/10.5194/acp-15-9435-2015, 2015
Short summary
Short summary
We evaluate isotopic composition of NO3- in different environments across East Antarctica. At high snow accumulation sites, isotopic ratios are suggestive of preservation of NO3- deposition. At low accumulation sites, isotopes are sensitive to both the loss of NO3- due to photolysis and secondary formation of NO3- within the snow. The imprint of post-depositional alteration is not uniform with depth, making it difficult to predict the isotopic composition at depth from near-surface data alone.
Wendell W. Walters, Masayuki Takeuchi, Nga L. Ng, and Meredith G. Hastings
EGUsphere, https://doi.org/10.5194/egusphere-2023-2293, https://doi.org/10.5194/egusphere-2023-2293, 2023
Short summary
Short summary
The study introduces a novel chemical mechanism for explicitly tracking oxygen isotope transfer in oxidized reactive nitrogen and odd oxygen using the Regional Atmospheric Chemistry Mechanism, version 2. This model enhances our ability to simulate and compare oxygen isotope compositions of reactive nitrogen, revealing insights into oxidation chemistry. The approach shows promise for improving atmospheric chemistry models and tropospheric oxidation capacity predictions.
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1810, https://doi.org/10.5194/egusphere-2023-1810, 2023
Short summary
Short summary
Landlocked lakes are crucial in the Antarctic ecosystem and sensitive to climate change. Limited research on their distribution prompted us to develop an automated detection process using deep learning and multi-source satellite imagery. This allowed us to accurately determine the landlocked lakes’ open water (LLOW) area in Antarctica, generating high-resolution time series data. We find that the changes in positive degree days and air temperature predominantly drive variations in the LLOW area.
Tianming Ma, Zhuang Jiang, Minghu Ding, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-76, https://doi.org/10.5194/tc-2023-76, 2023
Preprint under review for TC
Short summary
Short summary
We constructed a box model to evaluate the isotope effects of atmosphere-snow water vapor exchange at Dome A, Antarctica. The results show a clear and invisible diurnal cycle in surface snow isotopes under summer and winter conditions, respectively. After a 24-hour period, the model predicts a depletion in snow δ18O and δD under winter conditions, opposite to those in summer. The results suggest that annually atmosphere-snow water vapor exchange causes little isotope changes at the study site.
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Short summary
Nitrate is a critical component of the atmosphere that degrades air quality and ecosystem health. We have investigated the nitrogen isotope compositions of nitrate from deposition samples collected across the northeastern United States. Spatiotemporal variability in the nitrogen isotope compositions was found to track with nitrate formation chemistry. Our results highlight that nitrogen isotope compositions may be a robust tool for improving model representation of nitrate chemistry.
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023, https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Short summary
Atmospheric nitrate has an important impact on human and ecosystem health. We evaluated atmospheric nitrate formation pathways in the northeastern US utilizing oxygen isotope compositions, which indicated a significant difference between the phases of nitrate (i.e., gas vs. particle). Comparing the observations with model simulations indicated that N2O5 hydrolysis chemistry was overpredicted. Our study has important implications for improving atmospheric chemistry model representation.
Youhong Sun, Bing Li, Xiaopeng Fan, Yuansheng Li, Guopin Li, Haibin Yu, Hongzhi Li, Dongliang Wang, Nan Zhang, Da Gong, Rusheng Wang, Yazhou Li, and Pavel G. Talalay
The Cryosphere, 17, 1089–1095, https://doi.org/10.5194/tc-17-1089-2023, https://doi.org/10.5194/tc-17-1089-2023, 2023
Short summary
Short summary
The discovery of polar subglacial lakes, rivers and streams has opened a new frontier of science within a short span. We present a new environmentally friendly approach to study subglacial reservoirs based on the concept of freezing-in instrumented probes carrying a tethering power-signal cable. In January 2022, the probe was successfully tested in East Antarctica: it reached the base of the ice sheet and returned to the ice surface with samples of melted water from the basal ice.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Jiajue Chai, Jack E. Dibb, Bruce E. Anderson, Claire Bekker, Danielle E. Blum, Eric Heim, Carolyn E. Jordan, Emily E. Joyce, Jackson H. Kaspari, Hannah Munro, Wendell W. Walters, and Meredith G. Hastings
Atmos. Chem. Phys., 21, 13077–13098, https://doi.org/10.5194/acp-21-13077-2021, https://doi.org/10.5194/acp-21-13077-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) derived from wildfire emissions plays a key role in controlling atmospheric oxidation chemistry. However, the HONO budget remains poorly constrained. By combining the field-observed concentrations and novel isotopic composition (N and O) of HONO and nitrogen oxides (NOx), we quantitatively constrained the relative contribution of each pathway to secondary HONO production and the relative importance of major atmospheric oxidants (ozone versus peroxy) in aged wildfire smoke.
Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith G. Hastings, and Craig R. Tobias
Biogeosciences, 18, 3421–3444, https://doi.org/10.5194/bg-18-3421-2021, https://doi.org/10.5194/bg-18-3421-2021, 2021
Short summary
Short summary
We measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from a New England river over an annual cycle, to monitor N loading and identify dominant sources from the watershed. We uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling, conforming to theoretical expectations of riverine nutrient cycling.
Guitao Shi, Hongmei Ma, Zhengyi Hu, Zhenlou Chen, Chunlei An, Su Jiang, Yuansheng Li, Tianming Ma, Jinhai Yu, Danhe Wang, Siyu Lu, Bo Sun, and Meredith G. Hastings
The Cryosphere, 15, 1087–1095, https://doi.org/10.5194/tc-15-1087-2021, https://doi.org/10.5194/tc-15-1087-2021, 2021
Short summary
Short summary
It is important to understand atmospheric chemistry over Antarctica under a changing climate. Thus snow collected on a traverse from the coast to Dome A was used to investigate variations in snow chemistry. The non-sea-salt fractions of K+, Mg2+, and Ca2+ are associated with terrestrial inputs, and nssCl− is from HCl. In general, proportions of non-sea-salt fractions of ions to the totals are higher in the interior areas than on the coast, and the proportions are higher in summer than in winter.
Minghu Ding, Biao Tian, Michael C. B. Ashley, Davide Putero, Zhenxi Zhu, Lifan Wang, Shihai Yang, Chuanjin Li, and Cunde Xiao
Earth Syst. Sci. Data, 12, 3529–3544, https://doi.org/10.5194/essd-12-3529-2020, https://doi.org/10.5194/essd-12-3529-2020, 2020
Short summary
Short summary
Dome A, is one of the harshest environments on Earth.To evaluate the characteristics of near-surface O3, continuous observations were carried out in 2016. The results showed different patterns between coastal and inland Antarctic areas that were characterized by high concentrations in cold seasons and at night. Short-range transport accounted for the O3 enhancement events (OEEs) during summer at DA, rather than efficient local production, which is consistent with previous studies.
Wendell W. Walters, Linlin Song, Jiajue Chai, Yunting Fang, Nadia Colombi, and Meredith G. Hastings
Atmos. Chem. Phys., 20, 11551–11567, https://doi.org/10.5194/acp-20-11551-2020, https://doi.org/10.5194/acp-20-11551-2020, 2020
Short summary
Short summary
This article details new field observations of the nitrogen stable isotopic composition of ammonia emitted from vehicles conducted in the US and China. Vehicle emissions of ammonia may be a significant source to urban regions with important human health and environmental implications. Our measurements have indicated a consistent isotopic signature from vehicle ammonia emissions. The nitrogen isotopic composition of ammonia may be a useful tool for tracking vehicle emissions.
Erika Marín-Spiotta, Rebecca T. Barnes, Asmeret Asefaw Berhe, Meredith G. Hastings, Allison Mattheis, Blair Schneider, and Billy M. Williams
Adv. Geosci., 53, 117–127, https://doi.org/10.5194/adgeo-53-117-2020, https://doi.org/10.5194/adgeo-53-117-2020, 2020
Short summary
Short summary
The geosciences are one of the least diverse disciplines in the United States, despite the field's relevance to people's livelihoods and economies. Bias, discrimination and harassment present serious hurdles to diversifying the field. We summarize research on the factors that contribute to the persistence of hostile climates in the geosciences and other scientific disciplines and provide recommendations for cultural change through the role of mentoring networks and professional associations.
O3 enhancement events(OEEs) at Dome A, East Antarctica
Minghu Ding, Biao Tian, Michael Ashley, Zhenxi Zhu, Lifan Wang, Shihai Yang, Chuanjin Li, Cunde Xiao, and Dahe Qin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1042, https://doi.org/10.5194/acp-2019-1042, 2020
Revised manuscript not accepted
Short summary
Short summary
In 2016, the first observation of near-surface ozone was made at Dome A, the inaccessible pole. And based on the ERA-interim meteorological reanalysis data, we clearly found that there was strong transportation from stratosphere to troposphere during polar night at Dome A. This work provides unique information of ozone variation in Dome A and expands our knowledge in Antarctica.
Tingfeng Dou, Zhiheng Du, Shutong Li, Yulan Zhang, Qi Zhang, Mingju Hao, Chuanjin Li, Biao Tian, Minghu Ding, and Cunde Xiao
The Cryosphere, 13, 3309–3316, https://doi.org/10.5194/tc-13-3309-2019, https://doi.org/10.5194/tc-13-3309-2019, 2019
Short summary
Short summary
The meltwater scavenging coefficient (MSC) determines the BC enrichment in the surface layer of melting snow and therefore modulates the BC-snow-albedo feedbacks. This study presents a new method for MSC estimation over the sea-ice area in Arctic. Using this new method, we analyze the spatial variability of MSC in the western Arctic and demonstrate that the value in Canada Basin (23.6 % ± 2.1 %) ≈ that in Greenland (23.0 % ± 12.5 %) > that in Chukchi Sea (17.9 % ± 5.0 %) > that in Elson Lagoon (14.5 % ± 2.6 %).
Jiajue Chai, David J. Miller, Eric Scheuer, Jack Dibb, Vanessa Selimovic, Robert Yokelson, Kyle J. Zarzana, Steven S. Brown, Abigail R. Koss, Carsten Warneke, and Meredith Hastings
Atmos. Meas. Tech., 12, 6303–6317, https://doi.org/10.5194/amt-12-6303-2019, https://doi.org/10.5194/amt-12-6303-2019, 2019
Short summary
Short summary
Isotopic analysis offers a potential tool to distinguish between sources and interpret transformation pathways of atmospheric species. We applied recently developed techniques in our lab to characterize the isotopic composition of reactive nitrogen species (NOx, HONO, HNO3, pNO3-) in fresh biomass burning emissions. Intercomparison with other techniques confirms the suitability of our methods, allowing for future applications of our techniques in a variety of environments.
Nathan J. Chellman, Meredith G. Hastings, and Joseph R. McConnell
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-163, https://doi.org/10.5194/tc-2016-163, 2016
Revised manuscript not accepted
Short summary
Short summary
This manuscript analyzes the changing sources of nitrate deposition to Greenland since 1760 CE using a dataset consisting of sub-seasonally resolved nitrogen isotopes of nitrate and source tracers. Correlations amongst ion concentration, source tracers, and the δ15N–NO3− provide evidence of the impact of biomass burning and fossil fuel combustion emissions of nitrogen oxides and suggest that oil combustion is the likely driver of increased nitrate concentration in Greenland ice since 1940 CE.
G. Shi, A. M. Buffen, M. G. Hastings, C. Li, H. Ma, Y. Li, B. Sun, C. An, and S. Jiang
Atmos. Chem. Phys., 15, 9435–9453, https://doi.org/10.5194/acp-15-9435-2015, https://doi.org/10.5194/acp-15-9435-2015, 2015
Short summary
Short summary
We evaluate isotopic composition of NO3- in different environments across East Antarctica. At high snow accumulation sites, isotopic ratios are suggestive of preservation of NO3- deposition. At low accumulation sites, isotopes are sensitive to both the loss of NO3- due to photolysis and secondary formation of NO3- within the snow. The imprint of post-depositional alteration is not uniform with depth, making it difficult to predict the isotopic composition at depth from near-surface data alone.
E. D. Sofen, B. Alexander, E. J. Steig, M. H. Thiemens, S. A. Kunasek, H. M. Amos, A. J. Schauer, M. G. Hastings, J. Bautista, T. L. Jackson, L. E. Vogel, J. R. McConnell, D. R. Pasteris, and E. S. Saltzman
Atmos. Chem. Phys., 14, 5749–5769, https://doi.org/10.5194/acp-14-5749-2014, https://doi.org/10.5194/acp-14-5749-2014, 2014
Related subject area
Antarctic
Evaluation of four calving laws for Antarctic ice shelves
Englacial architecture of Lambert Glacier, East Antarctica
Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
The evolution of future Antarctic surface melt using PISM-dEBM-simple
Characteristics and rarity of the strong 1940s westerly wind event over the Amundsen Sea, West Antarctica
Sensitivity of the MAR regional climate model snowpack to the parameterization of the assimilation of satellite-derived wet-snow masks on the Antarctic Peninsula
Stratigraphic noise and its potential drivers across the plateau of Dronning Maud Land, East Antarctica
Modes of Antarctic tidal grounding line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry
Evaluating the impact of enhanced horizontal resolution over the Antarctic domain using a variable-resolution Earth system model
Statistically parameterizing and evaluating a positive degree-day model to estimate surface melt in Antarctica from 1979 to 2022
Extensive and anomalous grounding line retreat at Vanderford Glacier, Vincennes Bay, Wilkes Land, East Antarctica
Widespread slowdown in thinning rates of West Antarctic ice shelves
Insights on the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Southern Ocean polynyas and dense water formation in a high-resolution, coupled Earth system model
Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations
Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature?
A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting
Contrasting sea ice drift and deformation between winter and spring in the Antarctic marginal ice zone
Local spatial variability in the occurrence of summer precipitation in the Sør Rondane Mountains, Antarctica
Annual evolution of the ice–ocean interaction beneath landfast ice in Prydz Bay, East Antarctica
Signature of the stratosphere-troposphere coupling on recent record-breaking Antarctic sea ice anomalies
Characteristics of the 1979–2020 Antarctic firn layer simulated with IMAU-FDM v1.2A
Cosmogenic-nuclide data from Antarctic nunataks can constrain past ice sheet instabilities
Exploring ice sheet model sensitivity to ocean thermal forcing and basal sliding using the Community Ice Sheet Model (CISM)
High mid-Holocene accumulation rates over West Antarctica inferred from a pervasive ice-penetrating radar reflector
The response of sea ice and high-salinity shelf water in the Ross Ice Shelf Polynya to cyclonic atmosphere circulations
Multidecadal Variability and Predictability of Antarctic Sea Ice in GFDL SPEAR_LO Model
Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica
Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode
Evolution of the dynamics, area, and ice production of the Amundsen Sea Polynya, Antarctica, 2016–2021
Megadunes in Antarctica: migration and characterization from remote and in situ observations
Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds
Modulation of the seasonal cycle of the Antarctic sea ice extent by sea ice processes and feedbacks with the ocean and the atmosphere
Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling
Ice Sheet and Sea Ice Ultrawideband Microwave radiometric Airborne eXperiment (ISSIUMAX) in Antarctica: first results from Terra Nova Bay
Antarctic contribution to future sea level from ice shelf basal melt as constrained by ice discharge observations
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries
The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack
New 10Be exposure ages improve Holocene ice sheet thinning history near the grounding line of Pope Glacier, Antarctica
Influence of fast ice on future ice shelf melting in the Totten Glacier area, East Antarctica
A comparison between Envisat and ICESat sea ice thickness in the Southern Ocean
Antarctic surface climate and surface mass balance in the Community Earth System Model version 2 during the satellite era and into the future (1979–2100)
An indicator of sea ice variability for the Antarctic marginal ice zone
Inverting ice surface elevation and velocity for bed topography and slipperiness beneath Thwaites Glacier
Hysteretic evolution of ice rises and ice rumples in response to variations in sea level
Variability in Antarctic surface climatology across regional climate models and reanalysis datasets
Sensitivity of the Ross Ice Shelf to environmental and glaciological controls
High-resolution subglacial topography around Dome Fuji, Antarctica, based on ground-based radar surveys over 30 years
Physical and mechanical properties of winter first-year ice in the Antarctic marginal ice zone along the Good Hope Line
Cosmogenic nuclide dating of two stacked ice masses: Ong Valley, Antarctica
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023, https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Short summary
We use numerical modeling to study iceberg calving off of ice shelves in Antarctica. We examine four widely used mathematical descriptions of calving (
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Short summary
Existing mass budget estimates for the northern Antarctic Peninsula (>70° S) are affected by considerable limitations. We carried out the first region-wide analysis of geodetic mass balances throughout this region (coverage of 96.4 %) for the period 2013–2017 based on repeat pass bi-static TanDEM-X acquisitions. A total mass budget of −24.1±2.8 Gt/a is revealed. Imbalanced high ice discharge, particularly at former ice shelf tributaries, is the main driver of overall ice loss.
Julius Garbe, Maria Zeitz, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 17, 4571–4599, https://doi.org/10.5194/tc-17-4571-2023, https://doi.org/10.5194/tc-17-4571-2023, 2023
Short summary
Short summary
We adopt the novel surface module dEBM-simple in the Parallel Ice Sheet Model (PISM) to investigate the impact of atmospheric warming on Antarctic surface melt and long-term ice sheet dynamics. As an enhancement compared to traditional temperature-based melt schemes, the module accounts for changes in ice surface albedo and thus the melt–albedo feedback. Our results underscore the critical role of ice–atmosphere feedbacks in the future sea-level contribution of Antarctica on long timescales.
Gemma K. O'Connor, Paul R. Holland, Eric J. Steig, Pierre Dutrieux, and Gregory J. Hakim
The Cryosphere, 17, 4399–4420, https://doi.org/10.5194/tc-17-4399-2023, https://doi.org/10.5194/tc-17-4399-2023, 2023
Short summary
Short summary
Glaciers in West Antarctica are rapidly melting, but the causes are unknown due to limited observations. A leading hypothesis is that an unusually large wind event in the 1940s initiated the ocean-driven melting. Using proxy reconstructions (e.g., using ice cores) and climate model simulations, we find that wind events similar to the 1940s event are relatively common on millennial timescales, implying that ocean variability or climate trends are also necessary to explain the start of ice loss.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Bryony I. D. Freer, Oliver J. Marsh, Anna E. Hogg, Helen Amanda Fricker, and Laurie Padman
The Cryosphere, 17, 4079–4101, https://doi.org/10.5194/tc-17-4079-2023, https://doi.org/10.5194/tc-17-4079-2023, 2023
Short summary
Short summary
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration, the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration and insights into ice shelf–ocean–subglacial interactions in grounding zones.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Hannah J. Picton, Chris R. Stokes, Stewart S. R. Jamieson, Dana Floricioiu, and Lukas Krieger
The Cryosphere, 17, 3593–3616, https://doi.org/10.5194/tc-17-3593-2023, https://doi.org/10.5194/tc-17-3593-2023, 2023
Short summary
Short summary
This study provides an overview of recent ice dynamics within Vincennes Bay, Wilkes Land, East Antarctica. This region was recently discovered to be vulnerable to intrusions of warm water capable of driving basal melt. Our results show extensive grounding-line retreat at Vanderford Glacier, estimated at 18.6 km between 1996 and 2020. This supports the notion that the warm water is able to access deep cavities below the Vanderford Ice Shelf, potentially making Vanderford Glacier unstable.
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023, https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary
Short summary
We report on a slowdown in the rate of thinning and melting of West Antarctic ice shelves. We present a comprehensive assessment of the Antarctic ice shelves, where we analyze at a continental scale the changes in thickness, flow, and basal melt over the past 26 years. We also present a novel method to estimate ice shelf change from satellite altimetry and a time-dependent data set of ice shelf thickness and basal melt rates at an unprecedented resolution.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hatterman, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiametta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-109, https://doi.org/10.5194/tc-2023-109, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and we quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Cyrille Mosbeux, Laurie Padman, Emilie Klein, Peter D. Bromirski, and Helen A. Fricker
The Cryosphere, 17, 2585–2606, https://doi.org/10.5194/tc-17-2585-2023, https://doi.org/10.5194/tc-17-2585-2023, 2023
Short summary
Short summary
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As ice shelves thin or lose contact with the bedrock, the upstream ice tends to accelerate, resulting in increased mass loss. Here, we use an ice sheet model to simulate the effect of seasonal sea surface height variations and see if we can reproduce observed seasonal variability of ice velocity on the ice shelf. When correctly parameterised, the model fits the observations well.
Lena Nicola, Dirk Notz, and Ricarda Winkelmann
The Cryosphere, 17, 2563–2583, https://doi.org/10.5194/tc-17-2563-2023, https://doi.org/10.5194/tc-17-2563-2023, 2023
Short summary
Short summary
For future sea-level projections, approximating Antarctic precipitation increases through temperature-scaling approaches will remain important, as coupled ice-sheet simulations with regional climate models remain computationally expensive, especially on multi-centennial timescales. We here revisit the relationship between Antarctic temperature and precipitation using different scaling approaches, identifying and explaining regional differences.
Steven Fons, Nathan Kurtz, and Marco Bagnardi
The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023, https://doi.org/10.5194/tc-17-2487-2023, 2023
Short summary
Short summary
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and complex snow cover on Antarctic sea ice, estimating the thickness of the ice pack is difficult using traditional methods in radar altimetry. In this work, we use a waveform model to estimate the freeboard and snow depth of Antarctic sea ice from CryoSat-2 and use these values to calculate sea ice thickness and volume between 2010 and 2021 and showcase how the sea ice pack has changed over this time.
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1076, https://doi.org/10.5194/egusphere-2023-1076, 2023
Short summary
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. However, our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic MIZ were affected by the balance between atmospheric and oceanic forcing and the local ice conditions.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
EGUsphere, https://doi.org/10.5194/egusphere-2023-490, https://doi.org/10.5194/egusphere-2023-490, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalysis, have been used to study the spatial variability of precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023, https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary
Short summary
The oceanic characteristics beneath sea ice significantly affect ice growth and melting. The high-frequency and long-term observations of oceanic variables allow us to deeply investigate their diurnal and seasonal variation and evaluate their influences on sea ice evolution. The large-scale sea ice distribution and ocean circulation contributed to the seasonal variation of ocean variables, revealing the important relationship between large-scale and local phenomena.
Raúl R. Cordero, Sarah Feron, Alessandro Damiani, Pedro J. Llanillo, Jorge Carrasco, Alia L. Khan, Richard Bintanja, Zutao Ouyang, and Gino Casassa
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-59, https://doi.org/10.5194/tc-2023-59, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Our results suggest that the unprecedented interannual variability seen in recent years in Antarctica has led to the emergence of the signal of the polar vortex dynamics in Antarctic sea ice changes. Often coupled with the polar vortex, the strength of the westerly winds drives the baffling rise and fall of sea ice cover around Antarctica. We found the signature of the stratosphere-troposphere coupling on recent all-time records (highs and lows) in the sea ice around Antarctica.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Anna Ruth W. Halberstadt, Greg Balco, Hannah Buchband, and Perry Spector
The Cryosphere, 17, 1623–1643, https://doi.org/10.5194/tc-17-1623-2023, https://doi.org/10.5194/tc-17-1623-2023, 2023
Short summary
Short summary
This paper explores the use of multimillion-year exposure ages from Antarctic bedrock outcrops to benchmark ice sheet model predictions and thereby infer ice sheet sensitivity to warm climates. We describe a new approach for model–data comparison, highlight an example where observational data are used to distinguish end-member models, and provide guidance for targeted sampling around Antarctica that can improve understanding of ice sheet response to climate warming in the past and future.
Mira Berdahl, Gunter Leguy, William H. Lipscomb, Nathan M. Urban, and Matthew J. Hoffman
The Cryosphere, 17, 1513–1543, https://doi.org/10.5194/tc-17-1513-2023, https://doi.org/10.5194/tc-17-1513-2023, 2023
Short summary
Short summary
Contributions to future sea level from the Antarctic Ice Sheet remain poorly constrained. One reason is that ice sheet model initialization methods can have significant impacts on how the ice sheet responds to future forcings. We investigate the impacts of two key parameters used during model initialization. We find that these parameter choices alone can impact multi-century sea level rise by up to 2 m, emphasizing the need to carefully consider these choices for sea level rise predictions.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Xiaoqiao Wang, Zhaoru Zhang, Michael S. Dinniman, Petteri Uotila, Xichen Li, and Meng Zhou
The Cryosphere, 17, 1107–1126, https://doi.org/10.5194/tc-17-1107-2023, https://doi.org/10.5194/tc-17-1107-2023, 2023
Short summary
Short summary
The bottom water of the global ocean originates from high-salinity water formed in polynyas in the Southern Ocean where sea ice coverage is low. This study reveals the impacts of cyclones on sea ice and water mass formation in the Ross Ice Shelf Polynya using numerical simulations. Sea ice production is rapidly increased caused by enhancement in offshore wind, promoting high-salinity water formation in the polynya. Cyclones also modulate the transport of this water mass by wind-driven currents.
Yushi Morioka, Liping Zhang, Thomas Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin Behera
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-18, https://doi.org/10.5194/tc-2023-18, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Antarctic sea ice extent shows decadal variations with its decrease in the 1980s and increase after the 2000s until 2015. Here we show that our climate model can predict the sea ice decrease by simulating deep convection in the Southern Ocean and the sea ice increase by capturing the surface wind variability. These results suggest that accurate simulation and prediction of subsurface ocean and atmosphere conditions are important for those of Antarctic sea ice variability on a decadal timescale.
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Short summary
The observed annual maximum landfast ice (LFI) thickness off Zhongshan (Davis) was 1.59±0.17 m (1.64±0.08 m). Larger interannual and local spatial variabilities for the seasonality of LFI were identified at Zhongshan, with the dominant influencing factors of air temperature anomaly, snow atop, local topography and wind regime, and oceanic heat flux. The variability of LFI properties across the study domain prevailed at interannual timescales, over any trend during the recent decades.
Serena Schroeter, Terence J. O'Kane, and Paul A. Sandery
The Cryosphere, 17, 701–717, https://doi.org/10.5194/tc-17-701-2023, https://doi.org/10.5194/tc-17-701-2023, 2023
Short summary
Short summary
Antarctic sea ice has increased over much of the satellite record, but we show that the early, strongly opposing regional trends diminish and reverse over time, leading to overall negative trends in recent decades. The dominant pattern of atmospheric flow has changed from strongly east–west to more wave-like with enhanced north–south winds. Sea surface temperatures have also changed from circumpolar cooling to regional warming, suggesting recent record low sea ice will not rapidly recover.
Grant J. Macdonald, Stephen F. Ackley, Alberto M. Mestas-Nuñez, and Adrià Blanco-Cabanillas
The Cryosphere, 17, 457–476, https://doi.org/10.5194/tc-17-457-2023, https://doi.org/10.5194/tc-17-457-2023, 2023
Short summary
Short summary
Polynyas are key sites of sea ice production, biological activity, and carbon sequestration. The Amundsen Sea Polynya is of particular interest due to its size and location. By analyzing radar imagery and climate and sea ice data products, we evaluate variations in the dynamics, area, and ice production of the Amundsen Sea Polynya. In particular, we find the local seafloor topography and associated grounded icebergs play an important role in the polynya dynamics, influencing ice production.
Giacomo Traversa, Davide Fugazza, and Massimo Frezzotti
The Cryosphere, 17, 427–444, https://doi.org/10.5194/tc-17-427-2023, https://doi.org/10.5194/tc-17-427-2023, 2023
Short summary
Short summary
Megadunes are fields of huge snow dunes present in Antarctica and on other planets, important as they present mass loss on the leeward side (glazed snow), on a continent characterized by mass gain. Here, we studied megadunes using remote data and measurements acquired during past field expeditions. We quantified their physical properties and migration and demonstrated that they migrate against slope and wind. We further proposed automatic detections of the glazed snow on their leeward side.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023, https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary
Short summary
Here we present a scaling relation that allows the comparison of the timescales of glaciers with geometric similarity. According to the relation, thicker and wider glaciers on a steeper bed slope have a much faster timescale than shallower, narrower glaciers on a flatter bed slope. The relation is supported by observations and simplified numerical simulations. We combine the scaling relation with a statistical analysis of the topography of 13 instability-prone Antarctic outlet glaciers.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Eveline C. van der Linden, Dewi Le Bars, Erwin Lambert, and Sybren Drijfhout
The Cryosphere, 17, 79–103, https://doi.org/10.5194/tc-17-79-2023, https://doi.org/10.5194/tc-17-79-2023, 2023
Short summary
Short summary
The Antarctic ice sheet (AIS) is the largest uncertainty in future sea level estimates. The AIS mainly loses mass through ice discharge, the transfer of land ice into the ocean. Ice discharge is triggered by warming ocean water (basal melt). New future estimates of AIS sea level contributions are presented in which basal melt is constrained with ice discharge observations. Despite the different methodology, the resulting projections are in line with previous multimodel assessments.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Jonathan R. Adams, Joanne S. Johnson, Stephen J. Roberts, Philippa J. Mason, Keir A. Nichols, Ryan A. Venturelli, Klaus Wilcken, Greg Balco, Brent Goehring, Brenda Hall, John Woodward, and Dylan H. Rood
The Cryosphere, 16, 4887–4905, https://doi.org/10.5194/tc-16-4887-2022, https://doi.org/10.5194/tc-16-4887-2022, 2022
Short summary
Short summary
Glaciers in West Antarctica are experiencing significant ice loss. Geological data provide historical context for ongoing ice loss in West Antarctica, including constraints on likely future ice sheet behaviour in response to climatic warming. We present evidence from rare isotopes measured in rocks collected from an outcrop next to Pope Glacier. These data suggest that Pope Glacier thinned faster and sooner after the last ice age than previously thought.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere, 16, 4473–4490, https://doi.org/10.5194/tc-16-4473-2022, https://doi.org/10.5194/tc-16-4473-2022, 2022
Short summary
Short summary
The differences between Envisat and ICESat sea ice thickness (SIT) reveal significant temporal and spatial variations. Our findings suggest that both overestimation of Envisat sea ice freeboard, potentially caused by radar backscatter originating from inside the snow layer, and the AMSR-E snow depth biases and sea ice density uncertainties can possibly account for the differences between Envisat and ICESat SIT.
Devon Dunmire, Jan T. M. Lenaerts, Rajashree Tri Datta, and Tessa Gorte
The Cryosphere, 16, 4163–4184, https://doi.org/10.5194/tc-16-4163-2022, https://doi.org/10.5194/tc-16-4163-2022, 2022
Short summary
Short summary
Earth system models (ESMs) are used to model the climate system and the interactions of its components (atmosphere, ocean, etc.) both historically and into the future under different assumptions of human activity. The representation of Antarctica in ESMs is important because it can inform projections of the ice sheet's contribution to sea level rise. Here, we compare output of Antarctica's surface climate from an ESM with observations to understand strengths and weaknesses within the model.
Marcello Vichi
The Cryosphere, 16, 4087–4106, https://doi.org/10.5194/tc-16-4087-2022, https://doi.org/10.5194/tc-16-4087-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ) in the Antarctic is the largest in the world ocean. Antarctic sea ice has large year-to-year changes, and the MIZ represents its most variable component. Processes typical of the MIZ have also been observed in fully ice-covered ocean and are not captured by existing diagnostics. A new statistical method has been shown to address previous limitations in assessing the seasonal cycle of MIZ extent and to provide a probability map of sea ice state in the Southern Ocean.
Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg
The Cryosphere, 16, 3867–3887, https://doi.org/10.5194/tc-16-3867-2022, https://doi.org/10.5194/tc-16-3867-2022, 2022
Short summary
Short summary
Hills and valleys hidden under the ice of Thwaites Glacier have an impact on ice flow and future ice loss, but there are not many three-dimensional observations of their location or size. We apply a mathematical theory to new high-resolution observations of the ice surface to predict the bed topography beneath the ice. There is a good correlation with ice-penetrating radar observations. The method may be useful in areas with few direct observations or as a further constraint for other methods.
A. Clara J. Henry, Reinhard Drews, Clemens Schannwell, and Vjeran Višnjević
The Cryosphere, 16, 3889–3905, https://doi.org/10.5194/tc-16-3889-2022, https://doi.org/10.5194/tc-16-3889-2022, 2022
Short summary
Short summary
We used a 3D, idealised model to study features in coastal Antarctica called ice rises and ice rumples. These features regulate the rate of ice flow into the ocean. We show that when sea level is raised or lowered, the size of these features and the ice flow pattern can change. We find that the features depend on the ice history and do not necessarily fully recover after an equal increase and decrease in sea level. This shows that it is important to initialise models with accurate ice geometry.
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Short summary
Climate models provide valuable information for studying processes such as the collapse of ice shelves over Antarctica which impact estimates of sea level rise. This paper examines variability across climate simulations over Antarctica for fields including snowfall, temperature and melt. Significant systematic differences between outputs are found, occurring at both large and fine spatial scales across Antarctica. Results are important for future impact assessments and model development.
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022, https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Short summary
Understanding how the Ross Ice Shelf will evolve in a warming world is important to the future stability of Antarctica. It remains unclear what changes could drive the largest mass loss in the future and where places are most likely to trigger larger mass losses. Sensitivity maps are modelled showing that the RIS is sensitive to changes in environmental and glaciological controls at regions which are currently experiencing changes. These regions need to be monitored in a warming world.
Shun Tsutaki, Shuji Fujita, Kenji Kawamura, Ayako Abe-Ouchi, Kotaro Fukui, Hideaki Motoyama, Yu Hoshina, Fumio Nakazawa, Takashi Obase, Hiroshi Ohno, Ikumi Oyabu, Fuyuki Saito, Konosuke Sugiura, and Toshitaka Suzuki
The Cryosphere, 16, 2967–2983, https://doi.org/10.5194/tc-16-2967-2022, https://doi.org/10.5194/tc-16-2967-2022, 2022
Short summary
Short summary
We constructed an ice thickness map across the Dome Fuji region, East Antarctica, from improved radar data and previous data that had been collected since the late 1980s. The data acquired using the improved radar systems allowed basal topography to be identified with higher accuracy. The new ice thickness data show the bedrock topography, particularly the complex terrain of subglacial valleys and highlands south of Dome Fuji, with substantially high detail.
Sebastian Skatulla, Riesna R. Audh, Andrea Cook, Ehlke Hepworth, Siobhan Johnson, Doru C. Lupascu, Keith MacHutchon, Rutger Marquart, Tommy Mielke, Emmanuel Omatuku, Felix Paul, Tokoloho Rampai, Jörg Schröder, Carina Schwarz, and Marcello Vichi
The Cryosphere, 16, 2899–2925, https://doi.org/10.5194/tc-16-2899-2022, https://doi.org/10.5194/tc-16-2899-2022, 2022
Short summary
Short summary
First-year sea ice has been sampled at the advancing outer edge of the Antarctic marginal ice zone (MIZ) along the Good Hope Line. Ice cores were extracted from five pancake ice floes and subsequently analysed for their physical and mechanical properties. Of particular interest was elucidating the transition of ice composition within the MIZ in terms of differences in mechanical stiffness and strength properties as linked to physical and textural characteristics at early-stage ice formation.
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022, https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Short summary
Glacier ice contains information on past climate and can help us understand how the world changes through time. We have found and sampled a buried ice mass in Antarctica that is much older than most ice on Earth and difficult to date. Therefore, we developed a new dating application which showed the ice to be 3 million years old. Our new dating solution will potentially help to date other ancient ice masses since such old glacial ice could yield data on past environmental conditions on Earth.
Cited articles
Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M.: Impact of
preindustrial biomass-burning emissions on the oxidation pathways of
tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303,
https://doi.org/10.1029/2003JD004218, 2004.
Alley, R., Finkel, R., Nishizumi, K., Anandakrishnan, A., Shuman, C.,
Mershon, G., Zielinski, G., and Mayewski, P. A.: Changes in continental and
sea-salt atmospheric loadings in central Greenland during the most recent
deglaciation: Model-based estimates, J. Glaciol., 41, 503–514, 1995.
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow
accumulation mapped using polarization of 4.3-cm wavelength microwave
emission, J. Geophys. Res., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006.
Aw, J. and Kleeman, M. J.: Evaluating the first-order effect of intraannual
temperature variability on urban air pollution, J. Geophys. Res., 108, 4365,
https://doi.org/10.1029/2002JD002688,
2003.
Barrie, L. A.: Scavenging ratios, wet deposition, and in-cloud oxidation: An
application to the oxides of sulphur and nitrogen, J. Geophys. Res., 90,
5789–5799, 1985.
Berhanu, T. A., Meusinger, C., Erbland, J., Jost, R., Bhattacharya, S.,
Johnson, M. S., and Savarino, J.: Laboratory study of nitrate photolysis in
Antarctic snow. II. Isotopic effects and wavelength dependence, J. Chem.
Phy., 140, 244306, https://doi.org/10.1063/1.4882899, 2014.
Berhanu, T. A., Savarino, J., Erbland, J., Vicars, W. C., Preunkert, S.,
Martins, J. F., and Johnson, M. S.: Isotopic effects of nitrate
photochemistry in snow: a field study at Dome C, Antarctica, Atmos. Chem.
Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, 2015.
Bertler, N., Mayewski, P. A., Aristarain, A., Barrett, P., Becagli, S.,
Bernardo, R., Bo, S., Xiao, C., Curran, M., and Qin, D.: Snow chemistry
across Antarctica, Ann. Glaciol., 41, 167–179, 2005.
Blunier, T., Floch, G., Jacobi, H.-W., and Quansah, E.: Isotopic view on
nitrate loss in Antarctic surface snow, Geophys. Res. Lett., 32, L13501,
https://doi.org/10.1029/2005GL023011, 2005.
Bock, J., Savarino, J., and Picard, G.: Air-snow exchange of nitrate: a
modelling approach to investigate physicochemical processes in surface snow
at Dome C, Antarctica, Atmos. Chem. Phys., 16, 12531–12550,
https://doi.org/10.5194/acp-16-12531-2016, 2016.
Brown, S., Ryerson, T., Wollny, A., Brock, C., Peltier, R., Sullivan, A.,
Weber, R., Dube, W., Trainer, M., and Meagher, J.: Variability in nocturnal
nitrogen oxide processing and its role in regional air quality, Science, 311,
67–70, https://doi.org/10.1126/science.1120120, 2006.
Burkhart, J. F., Bales, R. C., McConnell, J. R., Hutterli, M. A., and Frey,
M. M.: Geographic variability of nitrate deposition and preservation over the
Greenland Ice Sheet, J. Geophys. Res., 114, D06301, https://doi.org/10.1029/2008JD010600,
2009.
Carmagnola, C. M., Domine, F., Dumont, M., Wright, P., Strellis, B., Bergin,
M., Dibb, J., Picard, G., Libois, Q., Arnaud, L., and Morin, S.: Snow
spectral albedo at Summit, Greenland: measurements and numerical simulations
based on physical and chemical properties of the snowpack, The Cryosphere, 7,
1139–1160, https://doi.org/10.5194/tc-7-1139-2013, 2013.
Das, I., Bell, R. E., Scambos, T. A., Wolovick, M., Creyts, T. T., Studinger,
M., Frearson, N., Nicolas, J. P., Lenaerts, J. T., and van den Broeke, M. R.:
Influence of persistent wind scour on the surface mass balance of Antarctica,
Nat. Geosci., 6, 367–371, https://doi.org/10.1038/NGEO1766, 2013.
Davis, D., Chen, G., Buhr, M., Crawford, J., Lenschow, D., Lefer, B.,
Shetter, R., Eisele, F., Mauldin, L., and Hogan, A.: South Pole NOx
chemistry: an assessment of factors controlling variability and absolute
levels, Atmos. Environ., 38, 5375–5388, https://doi.org/10.1016/j.atmosenv.2004.04.039,
2004.
Dibb, J. E., Gregory Huey, L., Slusher, D. L., and Tanner, D. J.: Soluble
reactive nitrogen oxides at South Pole during ISCAT 2000, Atmos. Environ.,
38, 5399–5409, https://doi.org/10.1016/j.atmosenv.2003.01.001, 2004.
Ding, M., Xiao, C., Jin, B., Ren, J., Qin, D., and Sun, W.: Distribution of
δ18O in surface snow along a transect from Zhongshan Station to
Dome A, East Antarctica, Chin. Sci. Bull., 55, 2709–2714,
https://doi.org/10.1007/s11434-010-3179-3, 2010.
Ding, M., Xiao, C., Li, Y., Ren, J., Hou, S., Jin, B., and Sun, B.: Spatial
variability of surface mass balance along a traverse route from Zhongshan
station to Dome A, Antarctica, J. Glaciol., 57, 658–666, 2011.
Duderstadt, K. A., Dibb, J. E., Jackman, C. H., Randall, C. E., Solomon, S.
C., Mills, M. J., Schwadron, N. A., and Spence, H. E.: Nitrate deposition to
surface snow at Summit, Greenland, following the 9 November 2000 solar proton
event, J. Geophys. Res., 119, 6938–6957, https://doi.org/10.1002/2013JD021389, 2014.
Duderstadt, K. A., Dibb, J. E., Schwadron, N. A., Spence, H. E., Solomon, S.
C., Yudin, V. A., Jackman, C. H., and Randall, C. E.: Nitrate ion spikes in
ice cores not suitable as proxies for solar proton events, J. Geophys. Res.,
121, 2994–3016, https://doi.org/10.1002/2015JD023805, 2016.
Erbland, J., Vicars, W. C., Savarino, J., Morin, S., Frey, M. M., Frosini,
D., Vince, E., and Martins, J. M. F.: Air-snow transfer of nitrate on the
East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically
driven dynamic equilibrium in summer, Atmos. Chem. Phys., 13, 6403–6419,
https://doi.org/10.5194/acp-13-6403-2013, 2013.
Erbland, J., Savarino, J., Morin, S., France, J. L., Frey, M. M., and King,
M. D.: Air-snow transfer of nitrate on the East Antarctic Plateau – Part 2:
An isotopic model for the interpretation of deep ice-core records, Atmos.
Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015,
2015.
Felix, J. D. and Elliott, E. M.: The agricultural history of human –
nitrogen interactions as recorded in ice core δ15N-NO ,
Geophys. Res. Lett., 40, 1642–1646, https://doi.org/10.1002/grl.50209, 2013.
Fibiger, D. L., Hastings, M. G., Dibb, J. E., and Huey, L. G.: The
preservation of atmospheric nitrate in snow at Summit, Greenland, Geophys.
Res. Lett., 40, 3484–3489, https://doi.org/10.1002/grl.50659, 2013.
France, J. L., King, M. D., Frey, M. M., Erbland, J., Picard, G., Preunkert,
S., MacArthur, A., and Savarino, J.: Snow optical properties at Dome C
(Concordia), Antarctica; implications for snow emissions and snow chemistry
of reactive nitrogen, Atmos. Chem. Phys., 11, 9787–9801,
https://doi.org/10.5194/acp-11-9787-2011, 2011.
Frey, M. M., Savarino, J., Morin, S., Erbland, J., and Martins, J. M. F.:
Photolysis imprint in the nitrate stable isotope signal in snow and
atmosphere of East Antarctica and implications for reactive nitrogen cycling,
Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009,
2009.
Geng, L., Alexander, B., Cole-Dai, J., Steig, E. J., Savarino, J., Sofen, E.
D., and Schauer, A. J.: Nitrogen isotopes in ice core nitrate linked to
anthropogenic atmospheric acidity change, P. Natl. Acad. Sci., 111,
5808–5812, https://doi.org/10.1073/pnas.1319441111, 2014.
Geng, L., Murray, L. T., Mickley, L. J., Lin, P., Fu, Q., Schauer, A. J., and
Alexander, B.: Isotopic evidence of multiple controls on atmospheric oxidants
over climate transitions, Nature, 546, 133–136, https://doi.org/10.1038/nature22340,
2017.
Goodwin, I., De Angelis, M., Pook, M., and Young, N.: Snow accumulation
variability in Wilkes Land, East Antarctica, and the relationship to
atmospheric ridging in the 130∘–170∘ E region since 1930,
J. Geophys. Res., 108, 4673, https://doi.org/10.1029/2002JD002995, 2003.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H.
J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford,
J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D.,
Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W.,
Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J.,
Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R.,
Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence,
mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373,
https://doi.org/10.5194/acp-7-4329-2007, 2007.
Hara, K., Osada, K., Kido, M., Matsunaga, K., Iwasaka, Y., Hashida, G., and
Yamanouchi, T.: Variations of constituents of individual sea-salt particles
at Syowa station, Antarctica, Tellus B, 57, 230–246, 2005.
Hastings, M. G., Steig, E., and Sigman, D.: Seasonal variations in N and O
isotopes of nitrate in snow at Summit, Greenland: Implications for the study
of nitrate in snow and ice cores, J. Geophys. Res., 109, D20306,
https://doi.org/10.1029/2004JD004991, 2004.
Hastings, M. G., Jarvis, J. C., and Steig, E. J.: Anthropogenic impacts on
nitrogen isotopes of ice-core nitrate, Science, 324, 1288–1288,
https://doi.org/10.1126/science.1170510, 2009.
Holland, P. R., Bruneau, N., Enright, C., Losch, M., Kurtz, N. T., and Kwok,
R.: Modeled Trends in Antarctic Sea Ice Thickness, J. Climate, 27,
3784–3801, https://doi.org/10.1175/JCLI-D-13-00301.1, 2014.
Hou, S., Li, Y., Xiao, C., and Ren, J.: Recent accumulation rate at Dome A,
Antarctica, Chin. Sci. Bull., 52, 428–431, 2007.
Huey, L. G., Tanner, D. J., Slusher, D. L., Dibb, J. E., Arimoto, R., Chen,
G., Davis, D., Buhr, M. P., Nowak, J. B., Mauldin Iii, R. L., Eisele, F. L.,
and Kosciuch, E.: CIMS measurements of HNO3 and SO2 at the South
Pole during ISCAT 2000, Atmos. Environ., 38, 5411–5421,
https://doi.org/10.1016/j.atmosenv.2004.04.037, 2004.
Jones, A. E., Weller, R., Minikin, A., Wolff, E. W., Sturges, W. T.,
Mcintyre, H. P., Leonard, S. R., Schrems, O., and Bauguitte, S.: Oxidized
nitrogen chemistry and speciation in the Antarctic troposphere, J. Geophys.
Res., 1042, 21355–21366, 1999.
Jones, A. E., Wolff, E. W., Ames, D., Bauguitte, S. J.-B., Clemitshaw, K. C.,
Fleming, Z., Mills, G. P., Saiz-Lopez, A., Salmon, R. A., Sturges, W. T., and
Worton, D. R.: The multi-seasonal NOy budget in coastal Antarctica and its
link with surface snow and ice core nitrate: results from the CHABLIS
campaign, Atmos. Chem. Phys., 11, 9271–9285,
https://doi.org/10.5194/acp-11-9271-2011, 2011.
Jourdain, B., and Legrand, M.: Year-round records of bulk and size-segregated
aerosol composition and HCl and HNO3 levels in the Dumont d'Urville
(coastal Antarctica) atmosphere: Implications for sea-salt aerosol
fractionation in the winter and summer, J. Geophys. Res., 107,
ACH20-21–ACH20-13, https://doi.org/10.1029/2002JD002471, 2002.
Kasper-Giebl, A., Kalina, M. F., and Puxbaum, H.: Scavenging ratios for
sulfate, ammonium and nitrate determined at Mt. Sonnblick (3106 m a.s.l.),
Atmos. Environ., 33, 895–906, 1999.
Laluraj, C., Thamban, M., Naik, S., Redkar, B., Chaturvedi, A., and Ravindra,
R.: Nitrate records of a shallow ice core from East Antarctica: Atmospheric
processes, preservation and climatic implications, The Holocene, 21,
351–356, https://doi.org/10.1177/0959683610374886, 2010.
Lee, H.-M., Henze, D. K., Alexander, B., and Murray, L. T.: Investigating the
sensitivity of surface-level nitrate seasonality in Antarctica to primary
sources using a global model, Atmos. Environ., 89, 757–767,
https://doi.org/10.1016/j.atmosenv.2014.03.003, 2014.
Legrand, M.: Chemistry of Antarctic snow and ice, Le Journal De Physique
Colloques, 48, C1-77–C71-86, 1987.
Legrand, M. and Kirchner, S.: Origins and variations of nitrate in South
Polar precipitation, J. Geophys. Res., 95, 3493–3507 1990.
Legrand, M. and Mayewski, P. A.: Glaciochemistry of polar ice cores: a
review, Rev. Geophys., 35, 219–243, 1997.
Legrand, M., Wolff, E., and Wagenbach, D.: Antarctic aerosol and snowfall
chemistry: implications for deep Antarctic ice-core chemistry, Ann. Glaciol.,
29, 66–72, 1999.
Legrand, M., Preunkert, S., Weller, R., Zipf, L., Elsässer, C., Merchel,
S., Rugel, G., and Wagenbach, D.: Year-round record of bulk and
size-segregated aerosol composition in central Antarctica (Concordia site) –
Part 2: Biogenic sulfur (sulfate and methanesulfonate) aerosol, Atmos. Chem.
Phys., 17, 14055–14073, https://doi.org/10.5194/acp-17-14055-2017, 2017a.
Legrand, M., Preunkert, S., Wolff, E., Weller, R., Jourdain, B., and
Wagenbach, D.: Year-round records of bulk and size-segregated aerosol
composition in central Antarctica (Concordia site) – Part 1: Fractionation
of sea-salt particles, Atmos. Chem. Phys., 17, 14039–14054,
https://doi.org/10.5194/acp-17-14039-2017, 2017b.
Legrand, M. R., Stordal, F., Isaksen, I. S. A., and Rognerud, B.: A model
study of the stratospheric budget of odd nitrogen, including effects of solar
cycle variations, Tellus B, 41B, 413–426,
https://doi.org/10.1111/j.1600-0889.1989.tb00318.x, 1989.
Li, C., Ren, J., Qin, D., Xiao, C., Hou, S., Li, Y., and Ding, M.: Factors
controlling the nitrate in the DT-401 ice core in eastern Antarctica, Sci.
China Ser. D, 56, 1531–1539, https://doi.org/10.1007/s11430-012-4557-2, 2013.
Li, Y., Cole-Dai, J., and Zhou, L.: Glaciochemical evidence in an East
Antarctica ice core of a recent (AD 1450-1850) neoglacial episode, J.
Geophys. Res., 114, D08117, https://doi.org/10.1029/2008JD011091, 2009.
Li, Z., Zhang, M., Qin, D., Xiao, C., Tian, L., Kang, J., and Li, J.: The
seasonal variations of δ18O, Cl−, Na+, NO and
Ca2+ in the snow and firn recovered from Princess Elizabeth Land,
Antarctica, Chin. Sci. Bull., 44, 2270–2273, 1999.
Liss, P. S., Chuck, A. L., Turner, S. M., and Watson, A. J.: Air-sea gas
exchange in Antarctic waters, Antarct. Sci., 16, 517–529,
https://doi.org/10.1017/S0954102004002299, 2004.
Ma, Y., Bian, L., Xiao, C., Allison, I., and Zhou, X.: Near surface climate
of the traverse route from Zhongshan Station to Dome A, East Antarctica,
Antarct. Sci., 22, 443–459, https://doi.org/10.1017/S0954102010000209, 2010.
Marion, G., Farren, R., and Komrowski, A.: Alternative pathways for seawater
freezing, Cold Reg. Sci. Technol., 29, 259–266, 1999.
Mayewski, P. A. and Legrand, M. R.: Recent increase in nitrate concentration
of Antarctic snow, Nature, 346, 258–260, 1990.
McCabe, J. R., Thiemens, M. H., and Savarino, J.: A record of ozone
variability in South Pole Antarctic snow: Role of nitrate oxygen isotopes, J.
Geophys. Res., 112, D12303, https://doi.org/10.1029/2006JD007822, 2007.
Mulvaney, R. and Wolff, E.: Evidence for winter/spring denitrification of the
stratosphere in the nitrate record of Antarctic firn cores, J. Geophys. Res.,
98, 5213–5220, 1993.
Mulvaney, R. and Wolff, E.: Spatial variability of the major chemistry of the
Antarctic ice sheet, Ann. Glaciol., 20, 440–447, 1994.
Mulvaney, R., Wagenbach, D., and Wolff, E. W.: Postdepositional change in
snowpack nitrate from observation of year-round near-surface snow in coastal
Antarctica, J. Geophys. Res., 103, 11021–11031, 1998.
Parish, T. R. and Bromwich, D. H.: Reexamination of the near-surface airflow
over the Antarctic continent and implications on atmospheric circulations at
high southern latitudes, Mon. Weather. Rev., 135, 1961–1973,
https://doi.org/10.1175/MWR3374.1, 2007.
Pasteris, D., McConnell, J. R., Edwards, R., Isaksson, E., and Albert, M. R.:
Acidity decline in Antarctic ice cores during the Little Ice Age linked to
changes in atmospheric nitrate and sea salt concentrations, J. Geophys. Res.,
119, 5640–5652, https://doi.org/10.1002/2013JD020377, 2014.
Piel, C., Weller, R., Huke, M., and Wagenbach, D.: Atmospheric methane
sulfonate and non-sea-salt sulfate records at the European Project for Ice
Coring in Antarctica (EPICA) deep-drilling site in Dronning Maud Land,
Antarctica, J. Geophys. Res., 111, D03304,
https://doi.org/10.1029/2005JD006213, 2006.
Qin, D., Zeller, E. J., and Dreschhoff, G. A.: The distribution of nitrate
content in the surface snow of the Antarctic Ice Sheet along the route of the
1990 International Trans-Antarctica Expedition, J. Geophys. Res., 97,
6277–6284, 1992.
Röthlisberger, R., Hutterli, M. A., Sommer, S., Wolff, E. W., and
Mulvaney, R.: Factors controlling nitrate in ice cores: Evidence from the
Dome C deep ice core, J. Geophys. Res., 105, 20565–20572, 2000.
Röthlisberger, R., Hutterli, M. A., Wolff, E. W., Mulvaney, R., Fischer,
H., Bigler, M., Goto-Azuma, K., Hansson, M. E., Ruth, U., and
Siggaard-Andersen, M.-L.: Nitrate in Greenland and Antarctic ice cores: A
detailed description of post-depositional processes, Ann. Glaciol., 35,
209–216, 2002.
Röthlisberger, R., Mulvaney, R., Wolff, E. W., Hutterli, M. A., Bigler,
M., De Angelis, M., Hansson, M. E., Steffensen, J. P., and Udisti, R.: Limited
dechlorination of sea-salt aerosols during the last glacial period: Evidence
from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice
core, J. Geophys. Res., 108, 4526, https://doi.org/10.1029/2003JD003604, 2003.
Rankin, A. M. and Wolff, E. W.: A year-long record of size-segregated aerosol
composition at Halley, Antarctica, J. Geophys. Res., 108, 4775,
https://doi.org/10.1029/2003JD003993, 2003.
Rankin, A. M., Wolff, E. W., and Martin, S.: Frost flowers: Implications for
tropospheric chemistry and ice core interpretation, J. Geophys. Res., 107,
4683,
https://doi.org/10.1029/2002JD002492, 2002.
Russell, A., Mcgregor, G. R., and Marshall, G. J.: An examination of the
precipitation delivery mechanisms for Dolleman Island, eastern Antarctic
Peninsula, Tellus A, 56, 501–513, 2004.
Russell, A., McGregor, G., and Marshall, G.: 340 years of atmospheric
circulation characteristics reconstructed from an eastern Antarctic
Peninsula ice core, Geophys. Res. Lett., 33, L08702,
https://doi.org/10.1029/2006GL025899, 2006.
Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., and Thiemens, M. H.:
Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate
in coastal Antarctica, Atmos. Chem. Phys., 7, 1925–1945,
https://doi.org/10.5194/acp-7-1925-2007, 2007.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 2nd ed. Wiley, New York, 1997.
Shi, G.: Data set to: Nitrate concentrations in surface snow and snowpit on
the traverse from coast (Zhongshan Station) to Dome A, Data-sharing Platform
of Polar Science, Chinese Antarctic and Arctic Data Centre-CHINARE,
https://doi.org/10.11856/SNS.D.2018.001.v0, 2018.
Shi, G., Li, Y., Jiang, S., An, C., Ma, H., Sun, B., and Wang, Y.:
Large-scale spatial variability of major ions in the atmospheric wet
deposition along the China Antarctica transect
(31∘ N∼ 69∘ S), Tellus B, 64, 17134,
https://doi.org/10.3402/tellusb.v64i0.17134, 2012.
Shi, G., Buffen, A. M., Hastings, M. G., Li, C., Ma, H., Li, Y., Sun, B., An,
C., and Jiang, S.: Investigation of post-depositional processing of nitrate
in East Antarctic snow: isotopic constraints on photolytic loss,
re-oxidation, and source inputs, Atmos. Chem. Phys., 15, 9435–9453,
https://doi.org/10.5194/acp-15-9435-2015, 2015.
Shrestha, A., Wake, C., Dibb, J., and Whitlow, S.: Aerosol and Precipitation
Chemistry at a Remote Himalayan Site in Nepal, Aerosol Sci. Technol., 36,
441–456, 2002.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J.
R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M.,
Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng,
L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K.,
Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T.
A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer
counting (0–31 ka BP), Clim. Past, 12, 769–786,
https://doi.org/10.5194/cp-12-769-2016, 2016.
Smart, D. F., Shea, M. A., Melott, A. L., and Laird, C. M.: Low time
resolution analysis of polar ice cores cannot detect impulsive nitrate
events, J. Geophys. Res.-Space Phys., 119, 9430–9440,
https://doi.org/10.1002/2014JA020378, 2014.
Traversi, R., Becagli, S., Castellano, E., Cerri, O., Morganti, A., Severi,
M., and Udisti, R.: Study of Dome C site (East Antartica) variability by
comparing chemical stratigraphies, Microchem. J., 92, 7–14,
https://doi.org/10.1016/j.microc.2008.08.007, 2009.
Traversi, R., Usoskin, I., Solanki, S., Becagli, S., Frezzotti, M., Severi,
M., Stenni, B., and Udisti, R.: Nitrate in Polar Ice: A New Tracer of Solar
Variability, Sol. Phys., 280, 237–254, 2012.
Traversi, R., Udisti, R., Frosini, D., Becagli, S., Ciardini, V., Funke, B.,
Lanconelli, C., Petkov, B., Scarchilli, C., and Severi, M.: Insights on
nitrate sources at Dome C (East Antarctic Plateau) from multi-year aerosol
and snow records, Tellus B, 66, 22550, https://doi.org/10.3402/tellusb.v66.22550, 2014.
Traversi, R., Becagli, S., Brogioni, M., Caiazzo, L., Ciardini, V., Giardi,
F., Legrand, M., Macelloni, G., Petkov, B., Preunkert, S., Scarchilli, C.,
Severi, M., Vitale, V., and Udisti, R.: Multi-year record of atmospheric and
snow surface nitrate in the central Antarctic plateau, Chemosphere, 172,
341–354, https://doi.org/10.1016/j.chemosphere.2016.12.143, 2017.
Udisti, R., Becagli, S., Benassai, S., Castellano, E., Fattori, I.,
Innocenti, M., Migliori, A., and Traversi, R.: Atmosphere-snow interaction by
a comparison between aerosol and uppermost snow-layers composition at Dome C,
East Antarctica, Ann. Glaciol., 39, 53–61, 2004.
Wagenbach, D., Graf, V., Minikin, A., Trefzer, U., Kipfstuhl, J., Oerter, H.,
and Blindow, N.: Reconnaissance of chemical and isotopic firn properties on
top of Berkner Island, Antarctica, Ann. Glaciol., 20, 307–312, 1994.
Wagenbach, D., Ducroz, F., Mulvaney, R., Keck, L., Minikin, A., Legrand, M.,
Hall, J. S., and Wolff, E. W.: Sea-salt aerosol in coastal Antarctic regions,
J. Geophys. Res., 103, 10961–10974, 1998a.
Wagenbach, D., Legrand, M., Fischer, H., Pichlmayer, F., and Wolff, E. W.:
Atmospheric near-surface nitrate at coastal Antarctic sites, J. Geophys.
Res., 103, 11007–11020, 1998b.
Warren, S. G., Brandt, R. E., and Grenfell, T. C.: Visible and near-ultraviolet
absorption spectrum of ice from transmission of solar radiation into snow,
Appl. Optics, 45, 5320–5334, 2006.
Weller, R. and Wagenbach, D.: Year-round chemical aerosol records in
continental Antarctica obtained by automatic samplings, Tellus B, 59, 755–765, https://doi.org/10.1111/j.1600-0889.2007.00293.x, 2007.
Weller, R., Traufetter, F., Fischer, H., Oerter, H., Piel, C., and Miller,
H.: Postdepositional losses of methane sulfonate, nitrate, and chloride at
the European Project for Ice Coring in Antarctica deep-drilling site in
Dronning Maud Land, Antarctica, J. Geophys. Res., 109, 1–9,
https://doi.org/10.1029/2003JD004189, 2004.
Witherow, R. A., Lyons, W. B., Bertler, N. A., Welch, K. A., Mayewski, P. A.,
Sneed, S. B., Nylen, T., Handley, M. J., and Fountain, A.: The aeolian flux
of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape:
evidence from snow pit analysis, Antarct. Sci., 18, 497–505,
https://doi.org/10.1017/S095410200600054X, 2006.
Wolff, E. W.: Nitrate in polar ice, in: Ice core studies of global
biogeochemical cycles, edited by: Delmas, R. J., Springer, New York,
195–224, 1995.
Wolff, E. W., Jones, A. E., Bauguitte, S. J.-B., and Salmon, R. A.: The
interpretation of spikes and trends in concentration of nitrate in polar ice
cores, based on evidence from snow and atmospheric measurements, Atmos. Chem.
Phys., 8, 5627–5634, https://doi.org/10.5194/acp-8-5627-2008, 2008.
Wolff, E. W., Barbante, S., Becagle, S., Bigler, M., Boutron, C. F.,
Castellano, E., de Angelis, M., and Federer, U.: Changes in environment over
the last 800,000 years from chemical analysis of the EPICA Dome C ice core,
Quaternary Sci. Rev., 29, 285–295, 2010.
Wolff, E. W., Bigler, M., Curran, M., Dibb, J., Frey, M., Legrand, M., and
McConnell, J.: The Carrington event not observed in most ice core nitrate
records, Geophys. Res. Lett., 39, L08503, https://doi.org/10.1029/2012GL051603, 2012.
Wolff, E. W., Bigler, M., Curran, M. A. J., Dibb, J. E., Frey, M. M.,
Legrand, M., and Mcconnell, J. R.: Comment on “Low time resolution analysis
of polar ice cores cannot detect impulsive nitrate events” by D.F. Smart et
al., J. Geophys. Res., 121, 1920–1924, https://doi.org/10.1002/2015JA021570, 2016.
Xiao, C., Mayewski, P. A., Qin, D., Li, Z., Zhang, M., and Yan, Y.: Sea level
pressure variability over the southern Indian Ocean inferred from a
glaciochemical record in Princess Elizabeth Land, east Antarctica, J.
Geophys. Res., 109, D16101, https://doi.org/10.1029/2003JD004065, 2004.
Zatko, M. C., Grenfell, T. C., Alexander, B., Doherty, S. J., Thomas, J. L.,
and Yang, X.: The influence of snow grain size and impurities on the vertical
profiles of actinic flux and associated NOx emissions on the Antarctic and
Greenland ice sheets, Atmos. Chem. Phys., 13, 3547–3567,
https://doi.org/10.5194/acp-13-3547-2013, 2013.
Zatko, M., Geng, L., Alexander, B., Sofen, E., and Klein, K.: The impact of
snow nitrate photolysis on boundary layer chemistry and the recycling and
redistribution of reactive nitrogen across Antarctica and Greenland in a
global chemical transport model, Atmos. Chem. Phys., 16, 2819–2842,
https://doi.org/10.5194/acp-16-2819-2016, 2016.
Zeller, E. J., Dreschhoff, G. A., and Laird, C. M.: Nitrate flux on the Ross
Ice Shelf, Antarctica and its relation to solar cosmic rays, Geophys. Res.
Lett., 13, 1264–1267, 1986.
Short summary
The deposition and preservation of NO3− across East Antarctica was investigated. On the coast, dry deposition contributes 27–44 % of the NO3− fluxes, and the linear relationship between NO3− and snow accumulation rate suggests a homogeneity of atmospheric NO3− levels. In inland snow, a relatively weak correlation between NO3− and snow accumulation was found, indicating that NO3− is mainly dominated by post-depositional processes. The coexisting ions are generally less influential on snow NO3−.
The deposition and preservation of NO3− across East Antarctica was investigated. On the coast,...