Articles | Volume 12, issue 4
https://doi.org/10.5194/tc-12-1177-2018
https://doi.org/10.5194/tc-12-1177-2018
Research article
 | 
05 Apr 2018
Research article |  | 05 Apr 2018

Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica

Guitao Shi, Meredith G. Hastings, Jinhai Yu, Tianming Ma, Zhengyi Hu, Chunlei An, Chuanjin Li, Hongmei Ma, Su Jiang, and Yuansheng Li

Related authors

Measurement Report: Polycyclic aromatic hydrocarbons (PAHs) and their alkylated (RPAHs), nitrated (NPAHs) and oxygenated (OPAHs) derivatives in the global marine atmosphere: occurrence, spatial variations, and source apportionment
Rui Li, Yubing Shen, Yumeng Shao, Yining Gao, Ziwei Yao, Qian Liu, Xing Liu, and Guitao Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3740,https://doi.org/10.5194/egusphere-2024-3740, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Using deep learning and multi-source remote sensing images to map landlocked lakes in Antarctica
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
The Cryosphere, 18, 5347–5364, https://doi.org/10.5194/tc-18-5347-2024,https://doi.org/10.5194/tc-18-5347-2024, 2024
Short summary
Brief communication: Identification of 140 000-year-old blue ice in the Grove Mountains, East Antarctica, by krypton-81 dating
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024,https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Brief communication: Spatial and temporal variations in surface snow chemistry along a traverse from coastal East Antarctica to the ice sheet summit (Dome A)
Guitao Shi, Hongmei Ma, Zhengyi Hu, Zhenlou Chen, Chunlei An, Su Jiang, Yuansheng Li, Tianming Ma, Jinhai Yu, Danhe Wang, Siyu Lu, Bo Sun, and Meredith G. Hastings
The Cryosphere, 15, 1087–1095, https://doi.org/10.5194/tc-15-1087-2021,https://doi.org/10.5194/tc-15-1087-2021, 2021
Short summary
Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs
G. Shi, A. M. Buffen, M. G. Hastings, C. Li, H. Ma, Y. Li, B. Sun, C. An, and S. Jiang
Atmos. Chem. Phys., 15, 9435–9453, https://doi.org/10.5194/acp-15-9435-2015,https://doi.org/10.5194/acp-15-9435-2015, 2015
Short summary

Related subject area

Antarctic
Speed-up, slowdown, and redirection of ice flow on neighbouring ice streams in the Pope, Smith, and Kohler region of West Antarctica
Heather L. Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
The Cryosphere, 19, 1725–1738, https://doi.org/10.5194/tc-19-1725-2025,https://doi.org/10.5194/tc-19-1725-2025, 2025
Short summary
Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200
Nicolas C. Jourdain, Charles Amory, Christoph Kittel, and Gaël Durand
The Cryosphere, 19, 1641–1674, https://doi.org/10.5194/tc-19-1641-2025,https://doi.org/10.5194/tc-19-1641-2025, 2025
Short summary
A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70° S
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
The Cryosphere, 19, 1577–1597, https://doi.org/10.5194/tc-19-1577-2025,https://doi.org/10.5194/tc-19-1577-2025, 2025
Short summary
Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2
Mukund Gupta, Heather Regan, Younghyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
The Cryosphere, 19, 1241–1257, https://doi.org/10.5194/tc-19-1241-2025,https://doi.org/10.5194/tc-19-1241-2025, 2025
Short summary
Bathymetry-constrained impact of relative sea-level change on basal melting in Antarctica
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
The Cryosphere, 19, 1181–1203, https://doi.org/10.5194/tc-19-1181-2025,https://doi.org/10.5194/tc-19-1181-2025, 2025
Short summary

Cited articles

Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004. 
Alley, R., Finkel, R., Nishizumi, K., Anandakrishnan, A., Shuman, C., Mershon, G., Zielinski, G., and Mayewski, P. A.: Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: Model-based estimates, J. Glaciol., 41, 503–514, 1995. 
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006. 
Aw, J. and Kleeman, M. J.: Evaluating the first-order effect of intraannual temperature variability on urban air pollution, J. Geophys. Res., 108, 4365, https://doi.org/10.1029/2002JD002688, 2003. 
Barrie, L. A.: Scavenging ratios, wet deposition, and in-cloud oxidation: An application to the oxides of sulphur and nitrogen, J. Geophys. Res., 90, 5789–5799, 1985. 
Download
Short summary
The deposition and preservation of NO3 across East Antarctica was investigated. On the coast, dry deposition contributes 27–44 % of the NO3 fluxes, and the linear relationship between NO3 and snow accumulation rate suggests a homogeneity of atmospheric NO3 levels. In inland snow, a relatively weak correlation between NO3 and snow accumulation was found, indicating that NO3 is mainly dominated by post-depositional processes. The coexisting ions are generally less influential on snow NO3.
Share