Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Volume 11, issue 1
The Cryosphere, 11, 567–583, 2017
https://doi.org/10.5194/tc-11-567-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The evolution of permafrost in mountain regions

The Cryosphere, 11, 567–583, 2017
https://doi.org/10.5194/tc-11-567-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Feb 2017

Research article | 16 Feb 2017

Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH)

Samuel Weber et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Samuel Weber on behalf of the Authors (30 Sep 2016)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (12 Oct 2016) by Ketil Isaksen
RR by Anonymous Referee #3 (07 Nov 2016)
RR by Valentin Gischig (09 Nov 2016)
ED: Publish subject to minor revisions (Editor review) (28 Nov 2016) by Ketil Isaksen
AR by Samuel Weber on behalf of the Authors (09 Jan 2017)  Author's response    Manuscript
ED: Publish as is (30 Jan 2017) by Ketil Isaksen
Publications Copernicus
Download
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
We present a 8-year continuous time series of measured fracture kinematics and thermal...
Citation