Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Volume 11, issue 1
The Cryosphere, 11, 567–583, 2017
https://doi.org/10.5194/tc-11-567-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The evolution of permafrost in mountain regions

The Cryosphere, 11, 567–583, 2017
https://doi.org/10.5194/tc-11-567-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Feb 2017

Research article | 16 Feb 2017

Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH)

Samuel Weber et al.

Data sets

PermaSense data access PermaSense Consortium http://www.permasense.ch/public-data-access/permasense-data.html

PermaSense data portal PermaSense Consortium http://data.permasense.ch

Publications Copernicus
Download
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
We present a 8-year continuous time series of measured fracture kinematics and thermal...
Citation