Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-3071-2016
https://doi.org/10.5194/tc-10-3071-2016
Research article
 | 
21 Dec 2016
Research article |  | 21 Dec 2016

Strain localization and dynamic recrystallization in the ice–air aggregate: a numerical study

Florian Steinbach, Paul D. Bons, Albert Griera, Daniela Jansen, Maria-Gema Llorens, Jens Roessiger, and Ilka Weikusat

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Florian Steinbach on behalf of the Authors (11 Nov 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (02 Dec 2016) by Catherine Ritz
RR by Anonymous Referee #1 (02 Dec 2016)
ED: Publish as is (02 Dec 2016) by Catherine Ritz
AR by Florian Steinbach on behalf of the Authors (05 Dec 2016)
Download
Short summary
How glaciers or ice sheets flow is a result of microscopic processes controlled by the properties of individual ice crystals. We performed computer simulations on these processes and the effect of air bubbles between crystals. The simulations show that small-scale ice deformation is locally stronger than in other regions, which is enhanced by bubbles. This causes the ice crystals to recrystallise and change their properties in a way that potentially also affects the large-scale flow properties.