Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/tc-2020-368
https://doi.org/10.5194/tc-2020-368
11 Jan 2021
 | 11 Jan 2021
Status: this discussion paper is a preprint. It has been under review for the journal The Cryosphere (TC). The manuscript was not accepted for further review after discussion.

Brief Communication: Initializing RAMMS with High Resolution LiDAR Data for Avalanche Simulations

James Dillon and Kevin Hammonds

Abstract. The Rapid Mass Movements Simulator (RAMMS) is an avalanche dynamics software tool for research and forecasting. Since the model’s conception, the sensitivity of inputs on simulation results has been well-documented. Here, we introduce a new method for initializing RAMMS that can be easily operationalized for avalanche forecasting using high resolution LiDAR data. As a demonstration, hypothetical avalanche simulations were performed while incrementally incorporating semi-automated LiDAR-derived values for snow depth, interface topography, and vegetative cover from field-collected LiDAR data. Results show considerable variation in the calculated runout extent, flow volume, pressure, and velocity of the simulated avalanches when incorporating these LiDAR-derived values.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Share